Introduction to Position, Distance, and Displacement

A. **Reading Positions:**

When objects start moving, it is useful to be able to describe an object's location.

To describe location, imagine a meterstick is placed next to the object. The meterstick acts like a number line.

- Objects to the right of the zero (0) have **positive** positions
- Objects to the left of the zero (0) have **negative** positions

Examples:

![Number line with various objects at different positions]

- A. What is the position of the lightning bolt? 5 meters
- B. What is the position of the happy face? 1 meter
- C. What is the position of the sun? -4 meters

Use the number line below to give the positions of the objects (Don't forget units!):

![Number line with various objects at different positions]

1. What is the position of the heart? ________________
2. What is the position of the diamond? ________________
3. What is the position of the cross? ________________

B. **Locating Positions:**

Draw the object at the indicated locations:

![Number line with various marks]

4. Put an "s" at the 2 m mark.
5. Put a "d" at the -6 m mark.
6. Put a "k" at the 7 m mark.
7. Put an "e" at the -1 m mark.
C. **Changing positions:**

Objects often change positions. In this activity, find the initial and final positions of objects.

8. What is the initial position of the frog? ____________________

9. What is the final position of the frog? ________________

10. If the frog traveled in a straight line from the initial position to the final position, what distance did it travel? ________________

D. **Distance and Displacement:**

Now we will learn about two words that seem similar, but have different meanings in physics.

- **Distance:** measurement of the actual path traveled
- **Displacement:** the straight-line distance between 2 points

➢ If an object travels in one direction in a straight line, distance traveled is EQUAL to the displacement.
➢ Often, objects do not travel in straight lines (or they move back and forth), so distance and displacement are NOT EQUAL.

Examples:

Bessie the cow and Sally the bird both traveled from point “A” to point “B.” Sally traveled in a straight line and Bessie did not.

A. What distance does Bessie the cow travel? **25 meters**
B. What distance does Sally the bird travel? **10 meters**
C. What is Bessie the cow’s displacement? **10 meters**
D. What is Sally the bird’s displacement? **10 meters**
11. If the car travels once around the racetrack, what distance does it travel? __________

12. If the car travels twice around the racetrack, what distance does it travel? __________

13. If the car travels once around the racetrack, what is its displacement? ____________

E. **Showing Displacement:**

- When an object moves, an arrow can be drawn to show the displacement.
- The arrow points in the direction of motion.
 - The arrow should start (non-arrow side) at the starting position and end (arrow side) at the ending position.
 - The arrow should be straight.
- **Examples:**
 - A school bus

![Diagram of a school bus with an arrow from initial to final position.]

- A bike moving along a number line, from a position of 4 m to -3 m.

![Diagram of a bike on a number line, moving from 4 to -3.](attachment:bike_diagram.png)

- Any object, using x_i to represent the initial position and x_f to represent the final position. (In this case, the object moves from the -6 m position to the 3 meter position.)

![Diagram showing a number line with x_i and x_f.](attachment:position_diagram.png)
14. Draw an arrow showing an object that moves from the -4 m position to the 5 m position.

15. Draw an arrow showing an object that moves from the 7 m position to the 1 m position.

F. What about direction?:

- Displacement also includes direction!
- Possible directions include:
 - positive or negative
 - left or right
 - up or down
 - north, south, east, or west
- In this class, we will often use positive and negative to show direction.
 - A displacement is negative if the arrow points to the left or down
 - A displacement is positive if the arrow points to the right or up

16. Is the above displacement positive or negative? ______________

G. Calculating Displacement:

- Remember: Displacement is the straight-line distance between 2 points.
- To give a displacement we should give both the size and the direction.
- To find the size of the displacement, count the number of spaces from the initial to the final position.
- The following shows a displacement of -5 m
The following shows a displacement of $\pm 3 \text{ m}$

![Diagram showing a displacement of $\pm 3 \text{ m}$]

The following shows a displacement of $\pm 4 \text{ m}$

![Diagram showing a displacement of $\pm 4 \text{ m}$]

Use the number line below to answer the following questions:

![Number line]

17. Draw an arrow to show the displacement.
18. Is the initial position positive or negative? __________
19. Is the final position positive or negative? __________
20. Is the displacement positive or negative? __________
21. What is the displacement [size (with units) and direction (+ or -)]? __________

Use the number line below to answer the following questions:

![Number line]

22. Draw an arrow to show the displacement.
23. Is the initial position positive or negative? __________
24. Is the final position positive or negative? __________
25. Is the displacement positive or negative? __________
26. What is the displacement [size (with units) and direction (+ or -)]? __________
27. Use the above number line to help answer the following question: Freddy the cat started at the \(-3\) meter position. He then walked to other locations. Mark each new location with the letter for that part.

 a. Freddy **started** at the \(-3\) m position. (mark this position with an "a")
 b. First, Freddy walked 2 meters in the positive direction (right) to the \(-1\) m position.
 c. Second, Freddy walked 5 meters in the positive direction to the \(+4\) m position.
 d. Third, Freddy walked 1 meter in the negative direction to the \(+3\) m position.
 e. Finally, Freddy walked 8 meters in the negative direction to the \(-5\) m position.

 f. Draw a displacement arrow that starts at Freddy’s initial position (-3 m) and ends at Freddy’s final position (-5 m).

 g. What was Freddy’s total displacement? (for this, you only need to look at his initial and final position) (be sure to include sign, number, and units)

 h. To get the distance Freddy traveled, add up all the distances:

 \[2m + 5m + 1m + 8m = \text{__________
 } \text{ meters}\]

 i. Is Freddy’s total displacement equal in size to Freddy’s total distance traveled?
Introduction to Position, Distance, and Displacement

A. Reading Positions:

When objects start moving, it is useful to be able to describe an object’s location.

To describe location, imagine a meterstick is placed next to the object. The meterstick acts like a number line.

- Objects to the right of the zero (0) have **positive** positions
- Objects to the left of the zero (0) have **negative** positions

Examples:

![Number line with examples]

A. What is the position of the lightning bolt? **5 meters**
B. What is the position of the happy face? **1 meter**
C. What is the position of the sun? **4 meters**

Use the number line below to give the positions of the objects (Don’t forget units!):

![Number line with examples]

1. What is the position of the heart? **4 meters**
2. What is the position of the diamond? **-4 meters**
3. What is the position of the cross? **0 (origin)**

B. Locating Positions:

Draw the object at the indicated locations:

![Number line with objects]

4. Put an “s” at the 2 m mark.
5. Put a “d” at the -6 m mark.
6. Put a “k” at the 7 m mark.
7. Put an “e” at the -1 m mark.
C. Changing positions:

Objects often change positions. In this activity, find the initial and final positions of objects.

8. What is the initial position of the frog? $+6 \text{ m}$

9. What is the final position of the frog? $+2 \text{ m}$

10. If the frog traveled in a straight line from the initial position to the final position, what distance did it travel? 4 m

D. Distance and Displacement:

Now we will learn about two words that seem similar, but have different meanings in physics.

- **Distance**: measurement of the actual path traveled
- **Displacement**: the straight-line distance between 2 points

- If an object travels in one direction in a straight line, distance traveled is EQUAL to the displacement.
- Often, objects do not travel in straight lines (or they move back and forth), so distance and displacement are NOT EQUAL.

Examples:

Bessie the cow and Sally the bird both traveled from point “A” to point “B.” Sally traveled in a straight line and Bessie did not.

A. What distance does Bessie the cow travel? 25 meters
B. What distance does Sally the bird travel? 10 meters
C. What is Bessie the cow’s displacement? 10 meters
D. What is Sally the bird’s displacement? 10 meters
11. If the car travels once around the racetrack, what distance does it travel? \[100\text{ m}\]

12. If the car travels twice around the racetrack, what distance does it travel? \[200\text{ m}\]

13. If the car travels once around the racetrack, what is its displacement? \[0\text{ m}\]

E. **Showing Displacement:**

- When an object moves, an arrow can be drawn to show the displacement.
- The arrow points in the direction of motion.
 - The arrow should start (non-arrow side) at the starting position and end (arrow side) at the ending position.
 - The arrow should be straight.
- **Examples:**
 - A school bus

 ![Original Diagram](image)

- A bike moving along a number line, from a position of 4 m to \(-3\) m.

 ![Original Diagram](image)

- Any object, using \(x_i\) to represent the initial position and \(x_f\) to represent the final position. (In this case, the object moves from the \(-6\) m position to the 3 meter position.)

 ![Original Diagram](image)
14. Draw an arrow showing an object that moves from the $-4 \ m$ position to the $5 \ m$ position.

15. Draw an arrow showing an object that moves from the $7 \ m$ position to the $1 \ m$ position.

F. **What about direction?**:

- Displacement also includes direction!
- Possible directions include:
 - positive or negative
 - left or right
 - up or down
 - north, south, east, or west
- In this class, we will often use positive and negative to show direction.
 - A displacement is **negative** if the arrow points to the **left** or **down**
 - A displacement is **positive** if the arrow points to the **right** or **up**

16. Is the above displacement positive or negative? **negative**

G. **Calculating Displacement**:

- Remember: Displacement is the straight-line distance between 2 points.
- To give a displacement we should give both the **size** and the **direction**.
- To find the size of the displacement, **count** the number of spaces from the initial to the final position.
- The following shows a displacement of $-5 \ m$
• The following shows a displacement of +3 m

• The following shows a displacement of +4 m

Use the number line below to answer the following questions:

17. Draw an arrow to show the displacement.
18. Is the initial position positive or negative? \text{negative (−)}
19. Is the final position positive or negative? \text{positive (+)}
20. Is the displacement positive or negative? \text{positive (+)}
21. What is the displacement [size (with units) and direction (+ or −)]? \(d = df - di\)
 \[6\text{m} - (-3\text{m}) = 9\text{m}\]

Use the number line below to answer the following questions:

22. Draw an arrow to show the displacement.
23. Is the initial position positive or negative? \text{positive (+)}
24. Is the final position positive or negative? \text{negative (−)}
25. Is the displacement positive or negative? \text{negative (−)}
26. What is the displacement [size (with units) and direction (+ or −)]? \(d = df - di\)
 \[-4\text{m} - (-2\text{m}) = -2\text{m}\]
27. Use the above number line to help answer the following question: Freddy the cat started at the -3 meter position. He then walked to other locations. Mark each new location with the letter for that part.
 a. Freddy **started** at the -3 m position. (mark this position with an “a”)
 b. First, Freddy walked 2 meters in the positive direction (right) to the -1 m position.
 c. Second, Freddy walked 5 meters in the positive direction to the +4 m position.
 d. Third, Freddy walked 1 meter in the negative direction to the +3 m position.
 e. Finally, Freddy walked 8 meters in the negative direction to the -5 m position.
 f. Draw a displacement arrow that starts at Freddy’s initial position (-3 m) and ends at Freddy’s final position (-5 m).
 g. What was Freddy’s total displacement? (for this, you only need to look at his initial and final position) (be sure to include sign, number, and units)
 \[-2 \text{ m} \]
 h. To get the **distance** Freddy traveled, add up all the distances:
 \[2 \text{ m} + 5 \text{ m} + 1 \text{ m} + 8 \text{ m} = 16 \text{ m} \]
 i. Is Freddy’s total displacement equal in size to Freddy’s total distance traveled?
 \[\text{No} \quad \text{once there is a change in direction, distance and displacement are no longer the same.} \]