“The Great Human Migration
Why Africans Left their Homeland?”
By Guy Gugliotta
Smithsonian Magazine
July 2008

During the 20th Century two main theories developed to explain the archeological and fossil (bones) evidence that had been found.

- The first is the multi-regional hypothesis, which suggested that a species of our human ancestors spread throughout the globe, and modern humans evolved from these ancestors in several different locations.
- The second theory developed in the 1980s when scientists were able to analyze DNA. (DNA is a molecule that contains the genetic instructions used in the development and functioning of all known living organisms.) By analyzing DNA in living human populations, scientists could trace the people who were in someone’s family backward in time. These analyses have provided key support for the out-of-Africa theory. *Homo sapiens*, one of our ancestors, this new evidence has repeatedly shown, evolved in Africa, probably around 200,000 years ago.

Africa is rich in the fossils of human ancestors who lived millions of years ago. Lush, tropical lake country at the dawn of human evolution provided a good habitat for such mammals who stood on two feet, such as *Australopithecus afarensis*. Many such places are dry today, which makes it easy for scientists to study these fossils. Wind erosion exposes old bones that were covered in muck millions of years ago. Remains of early *Homo sapiens*, by contrast, are rare, not only in Africa, but also in Europe.

Did new technology, improved nutrition or some changes in the genes allow these modern humans to explore the world? Possibly, but other scholars point out that simpler factors may have contributed to the exodus from Africa. A recent DNA study suggests that massive dry spells before the great migration split Africa's modern human population into small, isolated groups and may have even threatened them with extinction. Only after the weather improved...
were the survivors able to reunite, multiply and, in the end, emigrate. Improvements in technology may have helped some of them set out for new lands. Climate change might have lowered the water level of rivers and seas and created land bridges.

DNA evidence suggests the original migration involved anywhere from 1,000 to 50,000 people. Scientists do not agree on the time of the departure—sometime more recently than 80,000 years ago—or the departure point, but most now appear to be leaning away from the Sinai, and toward a land bridge crossing what today is the Bab el Mandeb Strait separating Djibouti from the Arabian Peninsula at the southern end of the Red Sea. From there, the thinking goes, migrants could have followed a southern route eastward along the coast of the Indian Ocean. "It could have been almost accidental, a path of least resistance that did not require adaptations to different climates, topographies or diet." The migrants' path never went far from the sea, departed from warm weather or failed to provide familiar food, such as shellfish and tropical fruit.

This article is an abridged and adapted version of a longer article that can be found at http://www.smithsonianmag.com/history/the-great-human-migration-13561/?no-ist