The Great Human Migration
Why Africans Left their Homeland?
By Guy Gugliotta
Smithsonian Magazine
July 2008

When the study of human origins intensified in the 20th century, two main theories emerged to explain the archaeological and fossil record: one, known as the multi-regional hypothesis, suggested that a species of human ancestor dispersed throughout the globe, and modern humans evolved from this predecessor in several different locations. The other, out-of-Africa theory, held that modern humans evolved in Africa for many thousands of years before they spread throughout the rest of the world. While scientists speculated about possible theories, they had little conclusive evidence to prove or disprove their theories.

In the 1980s, new tools completely changed the kinds of questions that scientists could answer about the past. By analyzing DNA in living human populations, geneticists could trace lineages backward in time. These analyses have provided key support for the out-of-Africa theory. Homo sapiens, this new evidence has repeatedly shown, evolved in Africa, probably around 200,000 years ago.

Africa is relatively rich in the fossils of human ancestors who lived millions of years ago. Lush, tropical lake country at the dawn of human evolution provided one congenial living habitat for such hominids as Australopithecus afarensis. Many such places are dry today, which makes for a congenial exploration habitat for paleontologists. Wind erosion exposes old bones that were covered in muck millions of years ago. Remains of early Homo sapiens, by contrast, are rare, not only in Africa, but also in Europe. One suspicion is that the early moderns on both continents did not—in contrast to Neanderthals—bury their dead, but either cremated them or left them to decompose in the open.

Did new technology, improved nutrition or some genetic mutation allow modern humans to explore the world? Possibly, but other scholars point to more mundane factors that may have contributed to the exodus from Africa. A recent DNA study suggests that massive droughts before the great migration split Africa's modern human population into small, isolated groups and may have even threatened their extinction. Only after the weather improved were the
survivors able to reunite, multiply and, in the end, emigrate. Improvements in technology may have helped some of them set out for new territory. Or cold snaps may have lowered sea level and opened new land bridges.

DNA evidence suggests the original exodus involved anywhere from 1,000 to 50,000 people. Scientists do not agree on the time of the departure—sometime more recently than 80,000 years ago—or the departure point, but most now appear to be leaning away from the Sinai, once the favored location, and toward a land bridge crossing what today is the Bab el Mandeb Strait separating Djibouti from the Arabian Peninsula at the southern end of the Red Sea. From there, the thinking goes, migrants could have followed a southern route eastward along the coast of the Indian Ocean. "It could have been almost accidental, a path of least resistance that did not require adaptations to different climates, topographies or diet. The migrants' path never veered far from the sea, departed from warm weather or failed to provide familiar food, such as shellfish and tropical fruit.

This article is an abridged version of a longer article that can be found at http://www.smithsonianmag.com/history/the-great-human-migration-13561/?no-ist

The essence of the article was not changed, but parts of the article were left out to make it more accessible for a middle school student.