REVIEW OF UNIT 6 PART 1: EXPONENTIAL FUNCTIONS

Before we get started let's fill in some facts:

- Formula for Annual Growth: \[y = a (1 + r)^t \]
- Formula for Annual Decay: \[y = a (1 - r)^t \]
- Formula for Continuous Growth/Decay: \[y = a e^{rt} \]
- Formula for Compound Interest: \[y = a (1 + \frac{r}{n})^{nt} \]
- Domain of an Exponential in the form \(y = b^x \): \[\text{All reals} \]
- Range of an Exponential in the form \(y = b^x \): \[y > 0 \]
- Equation for the Horizontal asymptote for an Exponential in the form \(y = b^x \): \(x = A_x(\text{At}) \)

Matching \(\left(5 \right) \)

Match the situation below with its exponential model.

- a. \(y = 34(1.122)^t \)
- b. \(y = 8851(0.883)^t \)
- c. \(y = 8851(1.025)^t \) \(\text{in millions} \)
- d. \(y = 34(2)^t \)
- e. \(y = 8851(0.975)^t \)
- f. \(y = 8851(1.07)^t \)
- g. \(y = 8851(1.117)^t \)
- h. \(y = 34(0.891)^t \)
- i. \(y = 8851(1.068)^t \)
- j. \(y = 34(0.9)^t \)

1. The population of Mexico City, Mexico (in thousands) after \(t \) years when its current population is 8,851,000 with 2.5% growth each year.
2. The value of a boat \(t \) years after it was purchased for \$8851 when it decreases in value by 11.7% each year.
3. The number of amoeba present \(t \) days after you started an experiment with a sample of 34 amoeba that doubles every 6 days.
4. The amount (in grams) of the radioactive isotope manganese-52 remaining after \(t \) days when the initial amount is 34 grams and halves every 6 days.
5. The amount (in dollars) in an account after \(t \) years that pays 6.8% annual interest when the initial principal is \$8851 and the interest is compounded monthly.
1. If $5000 is invested at a rate of 3% compounded quarterly, what is the value of the investment in 5 years?

(1) $5190.33
(2) $5796.37
(3) $5805.92
(4) $5808.08

\[y = 5000 \left(1 + \frac{0.03}{4}\right)^{4 \times 5} = 5805.92 \]

2. What is the domain of \(f(x) = 2^x + 2 \)?

(1) All integers
(2) All real numbers
(3) \(y > 0 \)
(4) \(y > 2 \)

3. The value of \(x \) in the equation \(4^{2x+5} = 8^{3x} \) is

(1) 1
(2) 2
(3) 5
(4) -10

\[2(2x+5) = 3(3x) \]

4. Akeem invests $25,000 in an account that pays 4.75% annual interest compounded continuously. Using the formula \(A = Pe^{rt} \), where \(A \) is the amount in the account after \(t \) years, \(P \) is principal invested, and \(r \) is the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to double?

(1) 10.0
(2) 14.6
(3) 23.1
(4) 24.0

\[25000 e^{0.0475 \times t} = 50000 \]

5. Which equation is represented by the graph below?

(1) \(y = x \)
(2) \(y = 0.5^x \)
(3) \(y = 5^x \)
(4) \(y = 8.5^x \)

6. Which statement about the graph of the equation \(y = e^x \) is not true?

(1) It is asymptotic to the \(x \)-axis
(2) The domain is the set of all real numbers
(3) It lies in Quadrants I and II
(4) It passes through the point \((0, 2)\)
For each equation below, solve algebraically for \(x \):

7. \(27^{-3x} = 81^{1-3x} \)

\[
\begin{align*}
3(-3x) &= 4(1-3x) \\
-9x &= 4 - 12x \\
-3x &= 4 \\
x &= \frac{4}{3}
\end{align*}
\]

8. \(4^{5x} = \left(\frac{1}{64} \right)^{x+1} \)

\[
\begin{align*}
5x &= \left(\frac{1}{4} \right)^{x+1} \\
5x &= \left(\frac{1}{4} \right)^x \\
5x &= -3(x+1) \\
5x &= -3x - 3 \\
x &= -\frac{3}{8}
\end{align*}
\]

9. \(\frac{4 \cdot 2^{-x}}{2^{x-4}} = 16 \)

\[
\begin{align*}
2^{-x} &= 64 \\
2^{-x} &= 2^6 \\
x &= -6
\end{align*}
\]

10. The current population of Little Pond, New York, is 20,000. The population is \textit{decreasing}, as represented by the formula \(P = A(1.3)^{-0.234t} \) where \(P \) = final population, \(t \) = time, in years, and \(A \) = initial population.

What will the population be 5 years from now? Round your answer to the \textit{nearest hundred people}.

\[
P = 20000 \cdot (1.3)^{-0.234(5)} = 14,713.50948 \\
\sqrt{14,713.50948} \approx 383 \text{ people}
\]

11. Kathy deposits \$25,000 into an investment account with an annual rate of 5\%, \textit{compounded continuously}.

a) Write a formula to represent the value in Kathy’s account in \(t \) years.

\[
y = a e^{rt} \]

b) How much money will be in the account after 12 years? Round to the \textit{nearest hundred dollars}.

\[
y = 25000 e^{0.05(12)} = 84552.97 \approx 84550 \text{ dollars}
\]

12. The Smith family needs to have \$35,000 available in 18 years when their son is ready for college. If they have decided to invest in a mutual fund that \textit{compounds interest daily} at 5.2\%, how much money do they need to invest now to reach their goal?

\[
y = \frac{35000}{ \left(1 + \frac{.052}{365} \right)^{365(18)}} \\
an = 365 \\
\rightarrow r = .052 \\
n = 365 \\
t = 18 \\
\]

\[
y = \frac{35000}{ \left(2.54959164 \right)^{18}} \\
\rightarrow y = 13,727.69 \text{ dollars}
\]
13. If I deposit $2,000 into an account with a nominal interest rate of 1.2% compounded monthly, what's the value of the account in 2 years?

\[y = a \left(1 + \frac{r}{n}\right)^{nt} \]

\[a = 2000 \]
\[r = 0.012 \]
\[n = 12 \]
\[t = 2 \]

\[y = 2000 \left(1 + \frac{0.012}{12}\right)^{12(2)} \]

\[\approx 2048.56 \]

14. Given the equation \(P(t) = 450(0.85)^t \), where \(P \) is the population of Lonely Town, \(t \) years after 2010. Answer the following questions:

(a) What was the population in 2010?

\[\text{INITIAL!} \]

\[450 \]

(b) Is the population increasing or decreasing? Explain. At what rate?

\[1 + r \text{ is } > (\text{greater than}) \]
\[1 - r \text{ is } < (\text{less than}) \]

Decreasing by 15% since \(1 - r = 0.85 \)

\[\frac{-0.15}{-1} \]

\[r = 0.15 = 15\% \]

15. George invests $1200 money into an account with an interest rate of 4.75% compounded continuously. Brad invested in Account Z and his account is shown below.

Who has a larger principal? Who will have more money in 10 years?

\[\text{INITIAL } \Rightarrow \text{ BRAD: had 1000 initially} \]
\[\text{GEORGE: had 1200 initially} \]

In 10 years: BRAD had approximately $1700 (from graph).

\[\text{GEORGE has } y = 1200 e^{0.0475(10)} = 1929.617 \]

\[\text{GEORGE has the greater principal} \]

\[\text{GEORGE will have more} \]