1. Which expression is equivalent to $\frac{x^3y^4}{3x^2y^{-1}}$?
 1) $\frac{x^4y^5}{3}$
 2) $\frac{x^3y^4}{3}$
 3) $3x^5y^5$
 4) x^6y^5

 $= \frac{1}{3}x^4y^5$

2. Simplify: $\sqrt[5]{50x^2y^3}$
 $= 5xy\sqrt[5]{2x}$

3. Simplify: $\frac{\sqrt[5]{a^3b^6c^{12}}}{a^{5/3}b}$
 $= -3ab^2\sqrt[5]{a}$

4. The expression $\frac{4\sqrt[3]{a^2}}{a^4}$ is equivalent to
 1) $\frac{4a}{a^4}$
 2) $\frac{4a^3}{a}$
 3) $4a^3\sqrt[3]{a}$
 4) $4a^\frac{3}{2}$

3

5. Simplify the expression $\sqrt[3]{3x^3} - 2\sqrt[3]{5x}$
 $= \frac{5x\sqrt[3]{3x} - 6\sqrt[3]{5x}}{1 \times \sqrt[3]{3x}}$
 $= -1x\sqrt[3]{3x}$

6. Solve for x: $\sqrt{x+14} = (k+2)$

 $x + 14 = x^2 + yx + y$

 $-x = -y$

 $x^2 + 3x - 10 = 0$

 $(x+5)(x-2) = 0$

 $x = -5$ or $x = 2$

 $x = 2$

7. Solve for x: $\sqrt{4x - 4} - \sqrt{x + 8} = 0$

 1) 1
 2) -8
 3) -4
 4) 4

8. Solve the following system of equations:
 $x^2 + 8 = 9$

 $x = 3$

 $2x(x-3) = 0$

 $\frac{2x(x-3)}{x-3} = 0$

 $x = 0$, $x = 3$

 $2x = 1$

 $x = \frac{1}{2}$

 $y = \frac{3}{2}$

 $x = 3$

 $y = 3$

 $y = 0$

 $y = -3$
Unit 6 Questions

9. If $5000 is invested at a rate of 3% compounded quarterly, what is the value of the investment in 5 years?
 - (1) $5190.33
 - (2) $5796.37
 - (3) $5805.92
 - (4) $5808.08

10. What is the domain of $f(x) = 2^x + 2$?
 - (1) All integers
 - (2) All real numbers
 - (3) $y > 0$
 - (4) $y > 2$

11. Susie invests $500 in an account that is compounded continuously at an annual interest rate of 5%, according to the formula $A = Pe^{rt}$, where A is the amount accrued, P is the principal, r is the rate of interest, and t is the time, in years. Approximately how many years will it take for Susie's money to double?
 - (1) 1.4
 - (2) 6.0
 - (3) 13.9
 - (4) 14.7

12. The value of x in the equation $4^{2x+5} = 8^3x$ is
 - (1) 1
 - (2) 2
 - (3) 5
 - (4) -10

13. Akeem invests $25,000 in an account that pays 4.75% annual interest compounded continuously. Using the formula $A = Pe^{rt}$, where A = the amount in the account after t years, P = principal invested, and r = the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to double?
 - (1) 10.0
 - (2) 14.6
 - (3) 23.1
 - (4) 24.0

14. The solution set to the equation $3^{2x} = 11$ is
 - (1) $\left\{ \frac{\log 11}{2\log 3}, \frac{\log 11}{\log 9} \right\}$
 - (2) 1.0913
 - (3) both choices (1) and (2)
 - (4) {}