RATIONAL EXPONENTS AND RADICAL FUNCTIONS

Basic Exponent Properties

<table>
<thead>
<tr>
<th>EXPONENT LAWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x^a \cdot x^b = x^{a+b})</td>
</tr>
<tr>
<td>5. (x^{-a} = \frac{1}{x^a}) and (\frac{1}{x^{-a}} = x^a)</td>
</tr>
</tbody>
</table>

(a) \(x^3 \cdot x^{12} \)
(b) \(4x^3 \cdot 5x^5 \)
(c) \((-3x^2y)(5x^7y^3) \)
(d) \((4x^3y^6)(-7x^4) \)

(e) \(\frac{x^9}{x^3} \)
(f) \(\frac{5x^3y^7}{15xy^3} \)
(g) \(\frac{x^3}{x^{10}} \)
(h) \(\frac{10x^4y^3}{25x^8} \)

(i) \((x^3)^8 \)
(j) \((10x^3)^0 \)
(k) \((-4x^3)^3 \)
(l) \(\frac{x^2y^4}{x^5y} \)

Exercise: Rewrite each of the following power/root combinations as a rational exponent in simplest form.

(a) \(\sqrt{x} \)
(b) \(\sqrt[6]{x} \)
(c) \(\sqrt[6]{x} \)
(d) \(\sqrt[10]{x} \)

Simplifying Square Roots

Exercise #6: Simplify each of the following square roots. Show the manipulations that lead to your answers.

(a) \(\sqrt{18x^4} \)
(b) \(\sqrt{200x^2y^3} \)
(c) \(\sqrt{147x^6y^4} \)

Simplifying Higher Order Roots

Simplify each of the following higher order roots.

(a) \(\sqrt[3]{16} \)
(b) \(\sqrt[6]{108} \)
(c) \(\sqrt[8]{162} \)
(d) \(\sqrt[15]{64x^{12}y^{17}} \)
The Square Root Function
Consider the two functions $f(x) = \sqrt{x}$ and $g(x) = \sqrt{x+3} - 2$.
(All even powered roots will behave similarly.)

Explain how $g(x)$ is transformed from $f(x)$.
$g(x)$ is formed by shifting $f(x)$ to the left 3 and down 2.

State the domain and range of each function
\[f(x) = \sqrt{x} \quad g(x) = \sqrt{x+3} - 2 \]

Domain: \(\{x | x \geq 0\} \) \quad Domain: \(\{x | x \geq -3\} \)

Range: \(\{y | y \geq 0\} \) \quad Range: \(\{y | y \geq -2\} \)

Determine the domains of each of the following functions.

(a) \(y = \sqrt{x+10} \quad \text{Must be} \geq 0 \) \quad (b) \(y = \sqrt{x^2 - 4x - 5} \quad \text{Must be} \geq 0 \)

\[x+10 \geq 0 \]
\[x \geq -10 \]
\[\{x | x \geq -10\} \]

\[x^2 - 4x - 5 \geq 0 \]
\[(x-5)(x+1) = 0 \]
\[x = 5 \text{ or } x = -1 \]
\[x = -2 \Rightarrow (-2)^2 - 4(-2) - 5 = 7 \geq 0 \text{ Yes} \]
\[x = 0 \Rightarrow (0)^2 - 4(0) - 5 = -5 \leq 0 \text{ No} \]
\[x = 6 \Rightarrow (6)^2 - 4(6) - 5 = 7 \geq 0 \text{ Yes} \]
\[\{x | x \leq -1 \text{ or } x \geq 5\} \]

Solving Radical Equations
1. Isolate the radical
2. Raise both sides to the power of the index (or root value) to cancel the radical.

Exercise: Consider the system of equations shown below.
\[
y = \sqrt{x+3} \quad \text{and} \quad y = x+1
\]

(a) Solve this system **graphically** using the grid to the right.
(b) Solve this system **algebraically** for only the x-values using substitution below.

\[
\sqrt{x+3} = x+1
\]
\[
(x+1)^2 = (x+1)(x+1)
\]
\[
x+3 = x^2 + 2x + 1
\]
\[
x = x^2 + x - 2
\]
\[
0 = (x+2)(x-1)
\]
\[
x = -2 \text{ or } x = 1
\]

Be careful to check your answers algebraically and reject any extraneous (false) roots!
Solving Radical Inequalities

Even roots:
1. Solve the radical equation for one of the bounds.
2. Find the domain restriction for the other bound.

Odd roots:
1. Solve the radical equation for one of the bounds.
2. There is no domain restriction for the other bound.

Exercise:
\[4 \sqrt{x} + 3 \leq 23\]
\[-4 \leq x \leq 25\]
\[\left(\sqrt{5x}\right)^3 \leq 3(3)^3\]
\[x \geq 20\] or \([20, \infty)\]

CW-Inverses of Functions

Algebraically:
Switch the x and y variables and then re-solve to get back into \(y = \) form.

Example: \(y = 2x - 4\)
\[x = 2y - 4\]
\[x + 4 = 2y\]
\[y = \frac{x + 4}{2}\]

Graphically:
An inverse will be a reflection over the line \(y = x\) and will have diagonal line symmetry.

Example: \(y = 2x - 4\)
(Now switch the table of values to create the inverse function.)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-8</td>
</tr>
<tr>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>-2</td>
</tr>
<tr>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Find the real solution(s) of the equation. Round your answer to two decimal places.

| 1. \(\frac{2}{3}x^3 = \frac{3072}{3} \) | 2. \(\sqrt[3]{x} = \sqrt[3]{1024} \) |
| \(x = 4 \) | \(x + \frac{3}{2} = \sqrt[3]{50} \) |
| \(x = \frac{\sqrt[3]{50}}{2} - \frac{3}{2} \) |

Simplify the expression.

| 3. \(\frac{\sqrt[6]{729}}{9^{\frac{1}{3}}} \) | 4. \(\sqrt[3]{500} \) |
| \(\left(\frac{8^\frac{1}{3}}{3} \right)^3 = \frac{\sqrt[3]{500}}{\sqrt[3]{\sqrt[3]{125}}} = \frac{5\sqrt[3]{4}}{5} \) |
| 8 |

| 5. \(\sqrt[3]{32x^6y^8z^4} \) | 6. \(8^{\frac{4}{3}} \) |
| \(2yz \sqrt[3]{xy} \) | \(\sqrt[4]{8^4} = 2^4 = 16 \) |

| 7. \(\frac{\sqrt{208}}{\sqrt{13}} = \sqrt[2]{16} = 2 \) | 8. \((-125)^{\frac{2}{3}} \) |
| \(\sqrt[3]{-125} = (-5)^2 = 25 \) |

| 9. \(12\sqrt[5]{5} - 2\sqrt[5]{125} \) | 10. \(\sqrt[3]{81} \) |
| \(12\sqrt[5]{5} - 2(5\sqrt[5]{5}) = 12\sqrt[5]{5} - 10\sqrt[5]{5} \) | \(\frac{\sqrt[3]{3}}{\sqrt[3]{x^3}} \) |
| \(\sqrt[3]{5} \) |

| 11. \(\sqrt[3]{6n} - 26^{\frac{1}{2}}n^2 \) | 12. \(\sqrt[3]{625m^{10}} \) |
| \(7b\sqrt[5]{n} - 2b^2\sqrt[5]{n^2} \) | \(\sqrt[5]{(m^2)(m^2)(m^2)(m^2)} \) |
| \(5m^2 \sqrt[5]{n^2} \) |
20. A cylindrical container of water has a volume of 190 cubic inches. The radius \(r \) of the container can be found by using the formula \(r = \sqrt{\frac{V}{\pi h}} \), where \(V \) is the volume of the container and \(h \) is the height.

a) If the radius of the container is 3.5 inches, find the height. Round your answer to the nearest hundredth.

\[
(3.5)^2 = \left(\sqrt{\frac{190}{\pi h}}\right)^2 \Rightarrow 12.25 = \frac{190}{\pi h} \quad \frac{12.25 \pi h}{12.25} \quad h = 4.94
\]

b) If the height of the container is 10 inches, find the radius. Round your answer to the nearest hundredth.

\[
r = \sqrt{\frac{190}{\pi (10)}} = 2.459
\]

21. At the circus, the length of time \(t \) (in seconds) it takes for a trapeze artist to complete one full walk is given by the equation \(t = 2.31\ell^{2/3} \), where \(\ell \) is the length (in feet) of the trapeze line. The table below shows the length of the lines a certain performer must walk each show. How long will each walk take? Round your answers to the nearest tenth.

<table>
<thead>
<tr>
<th>Act</th>
<th>Walk length</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act 1</td>
<td>60 feet</td>
<td>17.9</td>
</tr>
<tr>
<td>Act 2</td>
<td>40 feet</td>
<td>14.6</td>
</tr>
<tr>
<td>Act 3</td>
<td>100 feet</td>
<td>23.1</td>
</tr>
<tr>
<td>Act 4</td>
<td>300 feet</td>
<td>40.0</td>
</tr>
</tbody>
</table>

22. Let \(f(x) = -2x^{2/3} \) and \(g(x) = -x^{2/3} \). Find \((f + g)(x) \) and \((f - g)(x) \) and state the domain of each.

Then evaluate \((f + g)(243) \) and \((f - g)(243) \).

\[
(f + g)(x) = -2x^{2/3} - x^{2/3} = -3x^{2/3} \quad (f + g)(243) = -3(243)^{2/3} = \frac{27}{-27} = 9
\]

\[
(f - g)(x) = -2x^{2/3} - (-x^{2/3}) = -x^{2/3} \quad (f - g)(243) = -(243)^{2/3} = -9
\]
23. Let \(f(x) = \frac{2}{3}x^2 \) and \(g(x) = -4x \). Find \((f \circ g)(x)\) and \(\left(\frac{f}{g}\right)(x)\) and state the domain of each. Then evaluate \((f \circ g)(4)\) and \(\left(\frac{f}{g}\right)(4)\).

\[
(f \circ g)(x) = \left(\frac{2}{3}x^2\right)(-4x) = -\frac{8}{3}x^3
\]

\[
(f \circ g)(4) = -\frac{8}{3}(4)^3 = -\frac{256}{3}
\]

\[
\left(\frac{f}{g}\right)(x) = \frac{\frac{2}{3}x^2}{-4x} = \frac{-\frac{1}{6}x}{x^2}
\]

\[
\left(\frac{f}{g}\right)(4) = \frac{-\frac{1}{6}(4)}{4^2} = \frac{-1}{3}
\]

Solve and check your answers.

24. \((4p - 7)^2 = 5^2\)

\[
p - \frac{7}{4} = \pm \frac{5}{1}
\]

\[
p = 8
\]

25. \(\sqrt{x+1} = -4\)

No solution! You must check your answers.

26. \((\sqrt{1-x})^2 = (-2)^2\)

\[
1 - x = -8
\]

\[
x = 9
\]

27. \(\sqrt{12 + x} = x\)

\[
x = 4
\]

28. \(y = \frac{y^2}{4} \quad (\text{where } y \neq 0)\)

\[
y^2 - 16y = 0
\]

\[
y(y - 16) = 0
\]

\[
(y = 0) \quad (y = 16)
\]

29. \(y = \sqrt{5y} \quad (\text{where } y \neq 0)\)

\[
y^2 = 25y
\]

\[
y^2 - 25y = 0
\]

\[
y(y - 25) = 0
\]

\[
(y = 0) \quad (y = 25)
\]

30. \((x^2 + 3\sqrt{x} - 2)^2\)

\[
x^2 > 9(x - 2)
\]

\[
x^2 > 9x - 18
\]

\[
x^2 - 9x + 18 > 0
\]

\[
(x - 6)(x - 3) > 0
\]

\[
x < 6 \quad x > 3
\]

31. \((\sqrt{1 - 3x} < x + 1)^2\)

\[
1 - 3x < x^2 + 2x + 1 + 3x - 1
\]

\[
x^2 + 5x > 0
\]

\[
x(x + 5) > 0
\]

\[
x < 0 \quad x > -5
\]

Check graph.

Graph does not exist here!
32. \((\sqrt{x^2 - 2x - 5})^2 = (x+1)^2 \)
\[x^2 - 2x - 5 = x^2 + 2x + 1 + \frac{2x}{1} \]
\[x - 2x - 5 = x^2 + 2x + 1 + \frac{2x}{1} \]
\[-7 = 4x \quad \therefore x = -\frac{7}{4} \quad \text{Check it!} \]
\[\text{No solution!} \]

33. \(\sqrt{3x-5} = 7 - \sqrt{x+2} \)
\[\text{Omit!} \]

34. \(2(3y-4)^\frac{3}{2} - 4 = 50 \)
\[\frac{3y-4}{2} = \frac{5y}{a} \]
\[\left(\frac{3y-4}{2} \right)^3 = \left(\frac{5y}{a} \right)^3 \]
\[\left(\frac{3y-4}{2} \right)^3 = \left(\frac{247}{3} \right)^3 \]
\[\frac{y - 207}{3} = \frac{y}{2} \]
\[\therefore y = \frac{207}{5} \]

35. \((2y - \frac{5}{16})^\frac{3}{4} - \frac{1}{8} = 7 \)
\[(2y - \frac{5}{16})^\frac{3}{4} = \frac{7}{1} + \frac{1}{8} \]
\[(2y - \frac{5}{16})^\frac{3}{4} = \frac{63}{8} \]
\[2y - \frac{5}{16} = \frac{63}{8} \]
\[\therefore y = \frac{27}{16} \]

Find the inverse of each.

36. \(f(x) = -2x^2 - 1 \)
\[x = \sqrt{-y + 2} \quad y = \sqrt{x + 1} \]
\[x + 2 = \sqrt{\frac{x + 1}{2}} \]

37. \(g(x) = -\frac{2}{x - 1} - 3 \)
\[x = \frac{y}{y^3 - 1} \]
\[x + 3 = \frac{-2}{y} \]

38. \(f(x) = -\sqrt[3]{x - 2} \)
\[x = \frac{y - 3}{y - 1} \]
\[x + 2 = \sqrt[3]{y - 1} \]

39. \(f(x) = \frac{-4}{7} x - \frac{16}{7} \)
\[7x = -4y + 16 \]
\[x = \frac{-4y - 16}{7} \]
\[\therefore y = 7x + 16 \]

40. \(g(x) = \frac{1}{-x + 3} - 1 \)
\[x = \frac{y}{-y + 3} - 1 \]
\[x + 1 = \frac{2y + 3}{y + 3} \]

41. \(f(x) = -\frac{10 - 5x}{2} \)
\[x = \frac{-10 + 5y}{2} \]
\[x + 10 = \frac{5y}{2} \]
\[\therefore y = 2x + 10 \]

42. \(f(x) = -x - 2x^2 \)
\[x = \frac{-1}{x + 3} - 1 \]
\[\frac{x + 3}{2} = \frac{x}{y + 3} \]

43. \(h(x) = 3x^3 + 3 \)
\[x = \frac{3y^3 - 3}{3} \]
\[x - 3 = \frac{3y^3 - 3}{3} \]
<table>
<thead>
<tr>
<th>44. $2\sqrt{x} - 5 \geq 3$</th>
<th>45. $\sqrt{x-4} \leq 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \geq 16$ or $[16, \infty)$</td>
<td>$x \leq 29$ Check graph!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>46. $2\sqrt{-(x-4)} - 6 \leq 0$</th>
<th>47. $-\sqrt{x+2} \geq -4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-5 \leq x \leq 4$</td>
<td>$-2 \leq x \leq 14$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48. $4\sqrt{x} + 1 < 9$</th>
<th>49. $-\sqrt{x-3} + 6 \leq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < 4$</td>
<td>$x \geq 19$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50. $\sqrt{-x+3} > 5$</th>
<th>51. $(\sqrt{x+7})^2 \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -4$ or $(-\infty, -4)$</td>
<td>$x \geq 2$</td>
</tr>
</tbody>
</table>

Graphs shown for selected inequalities.