UNIT #8 - FORMATIVE ASSESSMENT
COMMON CORE ALGEBRA II

Part I Questions

1. Which of the following functions would have no \(y \)-intercept?

 (1) \(y = \sqrt{x^2 - 2x + 9} \)
 (2) \(y = \sqrt{x + 3} \)
 (3) \(y = \sqrt{2x - 1} \)
 (4) \(y = \sqrt{5 - x} \)

 \[y = \sqrt{2(0) - 1} = \sqrt{-1} \]
 \[\sqrt{-1} \text{ is not a real number} \]

2. If \(\frac{2}{\sqrt{x}} \) was written in the form \(ax^n \) then which of the following would be the product of \(a \) and \(n \)?

 (1) \(-2\)
 (2) \(2\)
 (3) \(-\frac{1}{2}\)
 (4) \(-\frac{1}{8}\)

 \[2x^{-\frac{1}{2}} \Rightarrow a = 2 \text{ and } n = -\frac{1}{4} \]

 \[a \cdot n = (2)\left(-\frac{1}{4}\right) = -\frac{1}{2} \]

3. The expression \(\sqrt[3]{54x^8y^{12}} \) can be written in simplest radical form as

 (1) \(3x^2y^4\sqrt[3]{2x^2} \)
 (2) \(2x^3y\sqrt[3]{27x^3y^2} \)
 (3) \(18x^2y^3\sqrt[3]{2y^2} \)
 (4) \(9xy^2\sqrt[3]{6x^4y^2} \)

 \[\sqrt[3]{27x^3y^{12}} \cdot \sqrt[3]{2x^2} = 3x^2y^4\sqrt[3]{2x^2} \]

4. The expression \(\frac{\sqrt{x^3}}{\sqrt{x}} \) can be rewritten as

 (1) \(\sqrt{x^3}\)
 (2) \(\sqrt{x}\)
 (3) \(\sqrt{x}\)
 (4) \(\sqrt[3]{x^2}\)

 \[\frac{(x^3)^{\frac{1}{2}}}{x^{\frac{3}{2}}} = x^{\frac{3}{2} \cdot \frac{1}{2}} = x^{\frac{3}{4}} = x^{\frac{3}{4} - 1} = x^{\frac{1}{4}} = \sqrt[4]{x} \]

 (3)
5. Which of the following represents the solution set to \(4x^2 + 8x - 1 = 0 \)?

\[
\begin{align*}
(1) \quad x &= -1 \pm \sqrt{10} \\
(2) \quad x &= 2 \pm \sqrt{3}/2 \\
(3) \quad x &= -2 \pm \sqrt{7} \\
(4) \quad x &= -8 \pm \frac{\sqrt{80}}{8} = -8 \pm \frac{4\sqrt{5}}{8} = -8 \pm \frac{4}{8} = -1 \pm \sqrt{5}/2
\end{align*}
\]

6. Which of the following would be the positive x-coordinate where the line \(y = x + 2 \) intersects the circle \(x^2 + y^2 = 13 \)?

\[
\begin{align*}
(1) \quad x &= 1.35 \\
(2) \quad x &= 1.72 \\
(3) \quad x &= 2.17 \\
(4) \quad x &= 3.45
\end{align*}
\]

7. Which of the following is equivalent to \(\frac{(-2x^2)^3}{(4x^3)^2} \)?

\[
\begin{align*}
(1) \quad \frac{2}{x^2} \\
(2) \quad \frac{x^2}{8} \\
(3) \quad \frac{-1}{2x^4} \\
(4) \quad \frac{-4}{x^3}
\end{align*}
\]

8. Which of the following is the solution to the equation shown below in terms of the constants \(a, b, c, \) and \(d \)?

\[
\begin{align*}
(1) \quad x &= \frac{d^2 - c}{b} + a \\
(2) \quad x &= a + (bd - bc)^2 \\
(3) \quad x &= a + \frac{d^2 - c^2}{b} \\
(4) \quad x &= \frac{d^2}{c^2} + b - a
\end{align*}
\]
PART II QUESTIONS: Answer all questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps and explain your reasoning. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit.

9. Explain the two transformations that occur to the graph of \(y = \sqrt{x} \) to produce the graph of \(y = -\sqrt{x} + 5 \).

 In either order:
 (1) A shift to the left by 5 units.
 (2) A reflection in the x-axis.

10. If \(\sqrt[8]{x} \) was written as \(\sqrt[8]{x} \), then what would be the value of \(n \)? Explain your thinking.

 \[
 \sqrt[8]{x} = \left(\left((x)^{\frac{1}{4}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} = (x^{\frac{1}{4}})^{\frac{1}{2}} = x^{\frac{1}{2} \cdot \frac{1}{2}} = x^{\frac{1}{4}}
 \]

 \[\Rightarrow\]

 \[n = 8\]

11. Determine the domain of the function \(f(x) = \sqrt{3x - 21} \). Explain or show how you arrived at your answer.

 \[
 3x - 21 \geq 0 \\
 3x \geq 21 \\
 x \geq 7
 \]

PART III QUESTIONS: Answer all questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps and explain your reasoning. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit.

12. Two positive, real numbers differ by one and have a product equal to one. Algebraically, find the value of the smaller number to the nearest hundredth.

 Let \(x = \) the smaller number
 Let \(y = \) the larger number

 \[
 \begin{align*}
 y - x &= 1 \\
 xy &= 1
 \end{align*}
 \]

 \[
 \begin{align*}
 y &= x + 1 \\
 x(y + 1) &= 1
 \end{align*}
 \]

 \[
 \begin{align*}
 x^2 + x &= 1 \\
 x^2 + x - 1 &= 0 \\
 x &= \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2} \\
 x &= \frac{-1 \pm \sqrt{5}}{2} \\
 x &= 0.62
 \end{align*}
 \]
13. Find all solution(s) to the equation shown below. Show all work.

\[y + 3 = -\sqrt{y + 15} \]

\[
\begin{align*}
(y + 3)^2 &= (-\sqrt{y + 15})^2 \\
(y + 3)(y + 3) &= y + 15 \\
y^2 + 6y + 9 &= y + 15 \\
y^2 + 5y - 6 &= 0 \\
(y + 6)(y - 1) &= 0
\end{align*}
\]

\[
\begin{align*}
\text{Check } y &= -6: \\
-6 + 3 &= -\sqrt{-6 + 15} \\
-6 - 3 &= -9 \\
\sqrt{-9} &= \text{not a real number} \\
\end{align*}
\]

\[
\begin{align*}
\text{Check } y &= 1: \\
1 + 3 &= -\sqrt{1 + 15} \\
4 &= -\sqrt{16} \\
4 &= 4 \text{ no reject!}
\end{align*}
\]

\[y = -6 \text{ only} \]

PART IV QUESTION: Answer the question in this part. The question is worth 6 points.

14. Given the quadratic function \(y = x^2 + 8x + c \), where \(c \) is some real number constant, answer the following questions.

(a) If \(c = 4 \), find the \(x \)-intercepts of the function in simplest radical form. [3 points]

\[
y = x^2 + 8x + 4 \\
x^2 + 8x + 4 = 0
\]

\[
x = \frac{-8 \pm \sqrt{8^2 - 4(1)(4)}}{2(1)} = \frac{-8 \pm \sqrt{48}}{2} = -4 \pm 2\sqrt{3}
\]

(b) Use the quadratic formula to explain why the function will fail to have any \(x \)-intercepts if \(c = 20 \). [3 points]

\[
y = x^2 + 8x + 20 \\
x^2 + 8x + 20 = 0
\]

\[
x = \frac{-8 \pm \sqrt{8^2 - 4(1)(20)}}{2(1)} = \frac{-8 \pm \sqrt{-16}}{2}
\]

Because the square root of negative 16 can be no real number, this parabola will fail to have any \(x \)-intercepts.