1) \(\cot \frac{5\pi}{4} \)

\[
\tan \frac{5\pi}{4} = 1 \quad \frac{1}{1} = 1
\]

2) \(\sec \frac{7\pi}{6} \)

\[
\cos \frac{7\pi}{6} = \frac{1}{2} \quad \frac{1}{2} = \frac{3}{2}
\]

3) \(\cos (-2\pi/3) \)

\[
\cos \frac{-2\pi}{3} = \frac{1}{2}
\]

4) \(\sec \frac{7\pi}{4} \)

\[
\cos \frac{7\pi}{4} = \frac{1}{2} \quad \frac{1}{2} = \frac{\sqrt{2}}{2}
\]

5) \(\sec \frac{5\pi}{3} \)

\[
\cos \frac{5\pi}{3} = \frac{1}{2} \quad \frac{1}{2} = 2
\]

6) What is the phase shift & horizontal shift of the function \(h(t) = 4\cos(\pi t - \frac{\pi}{2}) + 3 \)?

Sketch this graph for one cycle (be sure to include all important labels and landmarks.)

7) Prove the following trigonometric identity.

\[
\frac{1 + \sec \theta}{1 - \sec^2 \theta} = \frac{\cos \theta}{\cos \theta - 1}
\]

\[
\left(\frac{1 + \sec \theta}{1 - \sec \theta} \right) \cdot \frac{\cos \theta}{\cos \theta - 1} = \frac{1}{1 - \sec \theta}
\]
WITH CALCULATOR:

8) Suppose that you are on a Ferris wheel that turns in a counter-clockwise direction, and that your height (in feet) above the ground at time \(t \) (in minutes) is given by:

\[h(t) = 15\sin(\pi t) + 20 \]

a) How high above the ground are you at \(t = 0 \)?

\[20 \text{ ft} \]

b) What is your position on the wheel at \(t = 0 \)?
(e.g., the twelve o’clock position)

\[3 \text{ o’clock} \]

c) How long does it take to make one revolution?

\[\theta = \frac{2\pi}{\omega} = 2 \text{ min} \]

d) What is your height at after being on the ride for 45 seconds?

\[45 \text{ sec's} = \frac{45}{60} = \frac{3}{4} \text{ of } .75 \text{ minutes} \]

\[h(0.75) = 15\sin(\pi(0.75)) + 20 = 30.6 \text{ ft} \]

e) What arc length does a car on this ferris wheel travel through in 1.5 minutes?

\[r = 15 \]
\[\theta = \frac{3\pi}{2} \]

\[s = \frac{3\pi \sqrt{15}}{2} \approx 70.7 \text{ ft} \]

9) Starting one year before an election, a study was conducted to determine the popularity of the candidates. In the table below, \(A(t) \) represents the percent of the electorate that favor candidate \(A \), \(t \) months after the start of the study.

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>22</td>
<td>42</td>
<td>62</td>
<td>42</td>
<td>22</td>
</tr>
</tbody>
</table>

1. Express \(A \) as a trigonometric function of \(t \). Be sure to express your answer using exact values.

\[A(t) = -20\cos\left(\frac{\pi}{6} t \right) + 42 \]

2. Support for candidate \(B \) is given by \(B(t) = 31 + 15\sin\left(\frac{\pi}{6} t \right) \) and support for candidate \(C \) is given by \(C(t) = 42 - 20\sin\left(\frac{\pi}{6} t + \frac{\pi}{2} \right) \). For what value(s) of \(t \), to the nearest integer, are candidates \(B \) and \(C \) tied for support?

\[t = 3 \text{ and } 11 \]

10) Find the length of the arc in the following diagram (nearest 100th).

\[S = \theta \cdot r \]

\[S = (3.41)(\sqrt{3}) \]

\[S \approx 5.897 \]

\[(24, 90) \]

\[S = \sqrt{(-7)^2 + (-2)^2} \]

\[r = \sqrt{53} \]

\[\theta_{ref} = \tan^{-1}\left(\frac{2}{7}\right) \]

\[\theta = \pi + \theta_{ref} = \pi + \tan^{-1}\left(\frac{2}{7}\right) \approx 3.41989 \]