Solving Trig Equations with Double Angle Substitutions

[For each interval, solve from (0, 2\pi) instead of degrees.]

1. Find all values of \(x \) in the interval \(0^\circ < x < 360^\circ \) that satisfy the equation \(3 \cos x + \sin 2x = 0 \).

2. Find all values of \(\theta \) in the interval \(0^\circ \leq \theta < 360^\circ \) that satisfy the equation \(\cos \theta + \sin 2\theta = 0 \).

3. Find all values of \(\theta \) in the interval \(0^\circ \leq \theta < 360^\circ \) that satisfy the equation \(\sin 2\theta = \sin \theta \).
4. Solve the equation $\cos 2x = \cos x$ algebraically for all values of x in the interval $0^\circ \leq x < 360^\circ$.

5. Find all values of θ in the interval $0^\circ \leq \theta \leq 360^\circ$ which satisfy the equation $\sin \theta - \cos 2\theta = 0$.

6. In the interval $0^\circ \leq A \leq 360^\circ$, solve for all values of A in the equation $\cos 2A = -3 \sin A - 1$.