Name: **Answers**

Rational Functions

Vertical Asymptote vs “Hole” in the graph

Given: \(y = \frac{x^2 - 2x - 8}{x^2 - 1} = \frac{(x-4)(x+2)}{(x+1)(x-1)} \)

1. Find the horizontal asymptote, if any.
2. Find the vertical asymptote(s), if any.
3. Find the \(x \) intercept(s), if any.
4. Find the \(y \) intercept, if any.

(Check your answers with the graph!!!)

\[y = \frac{x^2}{x^2} \Rightarrow y = 1 \]

\(x = -1, \; x = 1 \)

\(x = 4, \; x = -2 \) or \((4,0) (6,0) \)

\(y = \frac{-8}{1} = 8 \)

\((0,8) \)

Now list the same pieces of information for this rational function.

Given: \(y = \frac{x^2 - 5x - 6}{x^2 - 1} = \frac{(x-6)(x+1)}{(x+1)(x-1)} \)

\(\Rightarrow y = \frac{(x-6)}{(x-1)} \) \(\quad \text{HOLE at } x = -1 \)

\(y = \frac{x^2}{x-1} \Rightarrow y = 1 \)

\(x = 1, \; x = -1 \)

\(x = 6, \; x = -1 \) or \((6,0) (-1,0) \)

\(y = \frac{-6}{1} = 6 \)

\((0,6) \)

Do all of your answers agree with the graph?
Which answers seem different? **NO!** **NO VERT ASY @ X = -1**
NO X INT @ X = -1

What creates this difference? **SIMILAR FACTORS THAT CANCEL!**

How do you know when there is a “hole” vs when there is a Vertical Asymptote?
If **SIMILAR FACTORS CAN CANCEL FROM TOP + BOTTOM**
then **HERE IS A HOLE (POINT OF REMOVABLE DISCONTINUITY)**

How do you find the coordinates of any “hole” in the graph?
USE THE X-VALUE FROM THE CANCELLED FACTOR AND PLUG INTO THE REDUCED (SIMPLIFIED) FORM OF THE EQUATION TO FIND THE Y-VALUE.
Given: \(y = \frac{3x^2 - 3x - 18}{2x^3 - 18} \)

1. Find the horizontal asymptote, if any.
2. Find the vertical asymptote(s), if any.
3. Find the x intercept(s), if any.
4. Find the y intercept, if any.
5. Find the coordinates of the "hole", if any

\[\Rightarrow y = \frac{3(x+2)}{2(x+3)} \]

(Check your answers with the graph!!!)

\[y = \frac{3x^2}{2x^2} \Rightarrow y = \frac{3}{2} \]

\[x = -3 \]

\[x = -2 \text{ or } (-2,0) \]

\[y = \frac{11}{8} \Rightarrow y = 1 \quad (0,1) \]

\[(3, \frac{15}{4}) \text{ or } (3, \frac{15}{4}) \]

\[\Rightarrow \text{ use } y = \frac{3(x+2)}{2(x+3)} \text{ and plug in } x = 3: \quad y = \frac{3(3+2)}{2(3+3)} \]

\[y = \frac{15}{12} \text{ so } (3, \frac{15}{12}) \text{ or } (3, \frac{3}{4}) \]

Given: \(y = \frac{2x+4}{x^2-16} = \frac{2x+2}{(x+4)(x-4)} \)

1. Find the horizontal asymptote, if any.
2. Find the vertical asymptote(s), if any.
3. Find the x intercept(s), if any.
4. Find the y intercept, if any.
5. Find the coordinates of the "hole", if any

\[y = \frac{2x}{x-4} \Rightarrow y = \frac{2}{1} \Rightarrow y = 0 \]

\[x = -4, \quad x = 4 \]

\[x = -2 \text{ or } (-2,0) \]

\[y = \frac{4}{16} \Rightarrow y = -\frac{1}{4} \quad (0, -\frac{1}{4}) \]

NONE!

Given: \(y = \frac{\sqrt{x}}{x^2+9} \)

1. Find the horizontal asymptote, if any.
2. Find the vertical asymptote(s), if any.
3. Find the x intercept(s), if any.
4. Find the y intercept, if any.
5. Find the coordinates of the "hole", if any

\[x^2 + 9 \text{ CAN NEVER = 0 FOR ANY REAL NUMBER.} \]

\[x^2 + 9 = 0 \rightarrow x = \pm 3i \]

\[x = \pm 3i \text{ SO NO REAL VERT ASYMPTOTES!} \]

\[y = \frac{x}{x^2} = \frac{1}{x} \rightarrow 0 \quad y = 0 \]

NONE! (since \(x^2 + 9 \neq 0 \))

\[x = 5 \text{ or } (5, 0) \]

\[y = \frac{-5}{9} \text{ or } (0, -\frac{5}{9}) \]

NONE!