Final Review

1. Find the average rate of change of \(f(x) = 3x^2 + 1 \) between the following points:
 a. \((1, f(1))\) and \((2, f(2))\)
 \[\frac{13 - 4}{2 - 1} = \frac{9}{1} = 9 \]
 b. \((f(3), f(5))\) and \((m, f(m))\)
 \[\frac{3m^2 + 1 - (3^2, 1)}{m - 3} = \frac{3m^2 - 3^2}{m - 3} = \frac{3(m - 3)}{m - 3} = 3 \]
 c. \((x, f(x))\) and \((x + h, f(x + h))\)
 \[\frac{6x^2 + 12x + 3}{6x^2 + 6xh + 3h^2} = \frac{6x^2 + 12x + 3}{6x + 3h} = \frac{6x^2 + 3h^2}{6x + 3h} \]

2. Does the table below represent a function? Do either represent a linear function? If so, write the formula.
 a. Both are functions.
 b.
 \[\begin{array}{c|c|c|c|c|c|}
 \hline
 x & 200 & 230 & 300 & 320 & 400 \\
 f(x) & 70 & 68.5 & 65 & 64 & 60 \\
 \hline
 \end{array} \]
 \[\text{Constant R.O.C.} \Rightarrow m = -0.05 \]

3. State whether the following lines are perpendicular, parallel, or neither.
 a. \(y = 3x + 3 \)
 \[m_1 = 3 \]
 b. \(y = \frac{1}{3}x + 3 \)
 \[m_2 = -\frac{3}{1} \]
 c. \(y = 5x + 2 \)
 \[m_3 = 5 \]
 d. \(y = 2x + 5 \)
 \[m_4 = 2 \]
 e. \(y = 7x + \frac{1}{3} \)
 \[m_5 = 7 \]
 f. \(9y = -7x \)
 \[m_6 = -\frac{7}{9} \]
 g. \(9y = 77 - \frac{3}{7}x \)
 \[m_7 = -\frac{3}{7} \]
4. You have zero dollars now and the average rate of change in your net worth is $5000 per year.
 a. Write a formula that models the above situation.
 \[y = 5000x \]
 b. How much money will you have in forty years?
 \[5000(40) = 200000 \]
 c. How many years before you have $100,000?
 \[\frac{5000x}{10000} = \frac{100000}{5000} \]
 \[x = 20 \]

5. Your gym charges you $35 a month for your membership. They charge you $11.50 per Zumba class you choose to take.
 a. Write a formula that models the above situation. \(\text{for each month?} \)
 \[y = 35 + 11.50x \]
 b. How much will it cost you this month if you decide to take 5 Zumba classes?
 \[35 + 11.50(5) = 82.50 \]
 c. How many Zumba classes did you take if your monthly gym cost was $127?
 \[127 = 35 + 11.50x \]
 \[x = 8 \]

6. Find the equation of the line parallel to \(3x + 5y = 6 \) and passes through the point \((0,6) \).
 \[m = \frac{-3x + 6}{5} \]
 \[m = \frac{-3}{5} \]
 \[y = \frac{-3}{5}x + 6 \]

7. Find the equation of the line shown in the diagram below.
 \[m = \frac{6-2}{5-1} = \frac{4}{4} = 1 \]
 \[y = x + 1 \]
 \[b = (0,1) \]
8. Graph the following piecewise function!

\[f(x) = \begin{cases}
 x^2 & \text{if } x < 2 \\
 6 & \text{if } x = 2 \\
 10 - x & \text{if } x > 2 \text{ and } x \leq 6
\end{cases} \]

9. Suppose you plan to buy many blank compact disks. You check price lists and find out that if you buy a 1000 CD’s or less you pay $0.74 each. However, if you buy between 1000 and 2000 CD’s the price drops to $0.69 each for the second thousand. Also, for any purchase of more than 2000, the price for the CD’s drops again to $0.64 for each after the 2000th.

a) Create the piecewise function to calculate the cost for purchasing up to 5000 CD’s. Let \(p(n) \) be the cost to purchase \(n \) cd’s.

\[
p(n) = \begin{cases}
 7.4n & \text{for } 0 \leq n \leq 1000 \\
 6.9(n-1000) + 740 & \text{for } 1000 < n \leq 2000 \\
 6.4(n-2000) + 1430 & \text{for } n > 2000
\end{cases}
\]

b) Calculate the cost to buy 250, 1000, 2000, and 3500 CD's respectively.

\[
p(n) = \begin{cases}
 7.4n & \text{for } (0, 1000] \\
 6.9n + 50 & \text{for } (1000, 2000] \\
 6.4n + 1430 & \text{for } (2000, \infty)
\end{cases}
\]
10. Write the piecewise function of the graph shown below:

\[y = \begin{cases}
X + 2, & X \in [-7, -2] \\
- \frac{4}{3}X - \frac{8}{3}, & X \in (-2, 4] \\
\frac{9}{2}X - 2, & X \in (4, 8]
\end{cases} \]

11. A phone company charges $29.95 a month for the first 500 minutes and $0.07 for each additional minute up to 1000 minutes. Write a piecewise function, \(C(x) \), of cost as a function of the number of minutes, \(x \), with the appropriate domains.

\[C(x) = \begin{cases}
29.95, & (0, 500] \\
0.07(x - 500) + 29.95, & (500, \infty)
\end{cases} \]

12.

a. Sketch a graph that models exponential growth

b. Sketch a graph that models exponential decay

13. Without a calculator, match the graph to the appropriate function:

- a) \(5(4)^x \)
- b) \(20(0.95)^x \)
- c) \(15(2.2)^x \)
- d) \(15(0.5)^x \)
- e) \(20(4.5)^x \)
14. The cost of a monthly LIRR ticket is about $225. Assume that the price of the ticket rises by 3.45% each year, write a formula that describes the cost of the ticket, \(C \), as a function of time, \(t \).

\[C(t) = 225 \left(1.0345\right)^t \]

15. The amount of a drug (in milligrams) that remains in the body after \(t \) hours is given by \(A(t) = 50(0.85)^t \).

 a. What is the initial dose of the drug given? 50

 b. What percent of the drug leaves the body each hour? 15\%

 c. What is the amount of the drug after 7 hours? (nearest hundredth of a milligram) 6.03

\[50 \left(0.85\right)^7 = 6.03 \]

16. How does an exponential function differ from a linear function?

 Constant % change rather than constant rate of change.

17. Based on the table below, determine which function is linear and which is exponential. Determine a formula for each.

<table>
<thead>
<tr>
<th>(x)</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>75</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>(g(x))</td>
<td>1000</td>
<td>1200</td>
<td>1440</td>
<td>1728</td>
<td>2073.6</td>
<td>2488.32</td>
</tr>
</tbody>
</table>

 \(f(x) \) is linear, \(g(x) \) is exponential.

18. Write an equation for the graph shown below:

 a. \[y = 3 \left(\frac{1}{3} \right)^x \]

 b. \[y = 3 \left(\frac{1}{2} \right)^x \]
Expand terms of $\log x$:

19. $x = \frac{ab^2}{\sqrt{cd}}$
 $\log a + 2 \log b - \frac{1}{4} \log c - \frac{1}{3} \log d$

20. $x = \sqrt[3]{\frac{a^2}{bd}}$
 $\frac{z}{3} \log a - \frac{1}{3} \log b - \frac{1}{3} \log d$

21. $x = \sqrt[3]{\frac{b^2}{cd}}$
 $\frac{1}{2} \log a + 2 \log b - \log c - \log d$

Express as a single log:

22. $\log x = \frac{1}{5} \left(\log m + 2 \log n \right) - \left(2 \log p + \log q \right)$
 $\sqrt[5]{\frac{m n^2}{p^2 q}}$

23. $\log x = \left(3 \log a + \log b \right) - \left(\frac{1}{2} \log c + 3 \log d \right)$
 $\frac{a^3 b}{\sqrt{c d^3}}$

24. $\log x = 4 \log a - 2 \log b$
 $\frac{a^4}{b^2}$

Express the following in terms of a and b if $\log 3 = a$ and $\log 5 = b$

25. $\log 25$
 $\log a^2 = 2 \log 5 = 2b$

26. $\log 9$
 $\log a^3 = 3 \log 3 = 3a$

27. $\log 45$
 $\log a^4 + \log 5 = 2a + b$
 $\log (a^4 \cdot 5)$
28. Describe the transformation of the function \(f(x) \):

a. \(-f(x)\)

\[
\begin{array}{c}
\downarrow \\
_{x \rightarrow 0}
\end{array}
\]

b. \(f(-x) \)

\[
\begin{array}{c}
\downarrow \\
_{y \rightarrow 0}
\end{array}
\]

c. \(f(x+k) \)

\[
\begin{array}{c}
\rightarrow k
\end{array}
\]

d. \(f(x-k) \)

\[
\begin{array}{c}
\rightarrow -k
\end{array}
\]

e. \(f(x)+k \)

\[
\begin{array}{c}
\uparrow k
\end{array}
\]

f. \(f(x)-k \)

\[
\begin{array}{c}
\downarrow k
\end{array}
\]

g. \(kf(x) \)

vert. stretch by factor of \(k \).

h. \(f(kx) \)

horiz. stretch by factor of \(k \).

29. If \(f(-x) = f(x) \), then the function has ___ ______________ symmetry.

30. If \(f(-x) = -f(x) \), then the function has ___ ______ symmetry. @ (0,0)

State whether the following functions are even, odd, or neither.

31. \(f(x) = \frac{1}{x^2} \)

Even

32. \(f(x) = x + 3 \)

Neither

33. \(f(x) = x^2 + 2x \)

Neither

34. \(f(x) = |x| \)

Even

Let \(f(x) = 1 - x \). Evaluate and simplify:

35. \(f(2x) \)

\[
\frac{1-2x}{x}
\]

36. \(f(x+1) \)

\[
1 - (x+1)
\]

37. \(f(1-x) \)

\[
1 - (1-x)
\]

\[
|\overrightarrow{x}|
\]
Find a formula for a parabola given the following information:

41. Roots at $x = -1, x = 3$ and passes through the point $(0, -3)$.

 \[y = a(x + 1)(x - 3) \]

 \[-3 = \frac{-3}{3} \]

 \[a = 1 \]

 \[y = (x + 1)(x - 3) \]

42. Root at $x = -15$ and the vertex point of $(-6, 9)$

 \(f(x, 0) \)

 \[y = a(x + 6)^2 + 9 \]

 \[9 = a(0)^2 + 9 \]

 \[a = \frac{9}{9} \]

 \[y = -1(x + 6)^2 + 9 \]

43. Roots at $x = 2$ (multiplicity of 2) and a y-intercept at -4.

 \(f(x, 0) \)

 \[y = a(x - 2)^2 \]

 \[-4 = a(0)^2 \]

 \[a = \frac{-4}{-4} \]

 \[y = -(x - 2)^2 \]

44. Fill in the table below: If you do not have enough information, please fill in the cell with a U.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>26</td>
<td>6</td>
<td>-6</td>
<td>-10</td>
<td>-6</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>$f(-x)$</td>
<td>-6</td>
<td>-16</td>
<td>-6</td>
<td>6</td>
<td>6</td>
<td>-6</td>
<td>-26</td>
</tr>
<tr>
<td>$-f(x)$</td>
<td>-26</td>
<td>-6</td>
<td>6</td>
<td>16</td>
<td>6</td>
<td>-6</td>
<td>-26</td>
</tr>
<tr>
<td>$3f(x)$</td>
<td>78</td>
<td>18</td>
<td>-18</td>
<td>-30</td>
<td>-18</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td>$f(x+2)$</td>
<td>26</td>
<td>-6</td>
<td>-16</td>
<td>-16</td>
<td>-6</td>
<td>-6</td>
<td>26</td>
</tr>
<tr>
<td>$f(x)+1$</td>
<td>27</td>
<td>7</td>
<td>-9</td>
<td>-5</td>
<td>7</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>$f(2x)$</td>
<td>72</td>
<td>46</td>
<td>-46</td>
<td>-46</td>
<td>-46</td>
<td>46</td>
<td>-46</td>
</tr>
</tbody>
</table>

a) Is $f(x)$ even, odd, or neither?

$N_e_i_t_h_e_r$

$f(-x) \neq \pm f(x)$
45. Fill in the table below. You must know these values.

<table>
<thead>
<tr>
<th></th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin θ</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
</tr>
<tr>
<td>cos θ</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>tan θ</td>
<td>(\frac{1}{\sqrt{3}})</td>
<td>1</td>
<td>(\sqrt{3})</td>
</tr>
</tbody>
</table>

46. If tan θ < 0 and csc θ > 0, in which quadrant does θ terminate?

47. Express 160° in radian measure.

\[\frac{160\pi}{180} = \frac{8\pi}{9}\]

48. The exact value of \(\sin \frac{3\pi}{2} - \cos \frac{\pi}{3}\) is

\[-1 - \frac{1}{2} = -1.5\]

49. An angle that measures \(\frac{5\pi}{6}\) radians is drawn in standard position. In which quadrant does the terminal side lie?

50. An art student wants to make a string collage by connecting six equally spaced points on the circumference of a circle to its center with string. What would be the radian measure of the angle between two adjacent pieces of string, in simplest form?

\[\frac{360^\circ}{6} = 6^\circ \Rightarrow \frac{\pi}{3}\]

51. State an angle that is coterminal with 125°?

52. If \(\theta\) is an angle in standard position and \(P(-3,4)\) is a point on the terminal side of \(\theta\), what is the value of sin \(\theta\)?
53. What is the value of \(\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) \)?

\[\frac{5\pi}{6} \text{ or } 150^\circ \]

54. If \(\sec \theta = -\frac{5}{4} \) and \(\theta \) lies in Quadrant II, what is the value of \(\tan \theta \)?

\[\cos \theta = -\frac{-4}{5} \]

55. In the accompanying diagram of a unit circle, the ordered pair \((x,y)\) represents the point where the terminal side of \(\theta \) intersects the unit circle. If \(x = -\frac{1}{2} \), what is one possible value for \(\theta \)?

\[\cos \theta = -\frac{1}{2} \]

56. What is the period of the function \(y = -3 \sin 2x \)?

\[\frac{2\pi}{2} = \pi \]

57. For which value of \(x \) is the fraction \(\frac{6}{\sin x - 1} \) undefined?

\[\sin x - 1 = 0 \]

\[\sin x = 1 \]

\[x = \frac{\pi}{2} \]
58. Assume that a child starts swinging until she reaches the highest she can swing and keeps her effort constant. The height \(h(t) \) of the seat is given by \(h(t) = 2 \sin \left(\frac{\pi}{2} t \right) + 3 \). Assume that \(t = 0 \) (seconds) is when the child passes through the equilibrium (starting) position.

a) Graph the height of the function \(h(t) \) for \(0 \leq t \leq 8 \)

b) What is the maximum height above the ground reached by the seat of the swing?

5

c) What is the period of the swinging child?

4

d) For how many seconds is the child above 3 feet?

\(\frac{3}{4} \) (2 out of every 4 seconds)

e) What is the height of the child at 6.5 seconds?

1.585786438
59. The accompanying graph shows a trigonometric function. State an equation of this function.

\[y = -2 \cos(x) \]

or

\[y = 2 \sin \left(x - \frac{\pi}{2} \right) \]

60. Given the accompanying graph, find the following:

\[a) \text{ The midline } = 0 \\
 b) \text{ The Amplitude } = 3 \\
 c) \text{ The Period } = \frac{\pi}{3} \\
 d) \text{ The Frequency } = \frac{2\pi}{3} \\
 e) \text{ Write an equation for this equation: } \\
 y = -3 \sin \left(\frac{2\pi}{3} x \right) \]

61. The tide at a boat dock can be modeled by the equation \(y = -2 \cos \left(\frac{\pi}{6} t \right) + 10 \), where \(t \) is the number of hours past noon and \(y \) is the height of the tide, in feet.

a) Using your calculator, graph this equation for one period beginning at \(t = 0 \).

b) What is the maximum height of the tide in feet?

\[12 \]

c) When does the maximum height occur? When does the minimum height occur?

\[\text{Max at } X = 6, \text{ Min at } X = 0, 12 \]

d) What is the average height of the tide?

\[\text{Avg } \approx 10 \]

e) For how many hours between \(t = 0 \) and \(t = 12 \) is the tide at least 9 feet?

\[\text{Between 2 and 10 hrs} \]

i.e., for 8 hours
62. The average annual snowfall in a certain region is modeled by the function $S(t) = 20 + 10 \cos \left(\frac{\pi}{5} t \right)$, where S represents the annual snowfall, in inches, and t represents the number of years since 1970.

a) What is the minimum annual snowfall, in inches, for this region?

\[\mu_{\min} = 20 - 10 = 10 \]

b) In which years, between 1970 and 2000 did the minimum amount of snow fall?

\[\overline{1975, 1985, 1995} \]

63. The accompanying data represents the rabbit population (L_2) over time, t, in months (L_1) beginning with $t = 1$ representing Jan 1.

a) Plot the data on the accompanying graph.

b) Find the midline, amplitude, period, and frequency for an equation that represents this scatterplot.

\[k(0 - 1000) \quad \ell_{\bar{x}} = 12 \]

\[\text{AMPL} = 5200 \quad \text{PER} = \frac{6}{5} \]

c) Write an equation to represent this data using the parameters found above.

\[y = -5200 \sin \left(\frac{6}{5} x \right) + 1000 \]

d) During which month does this rabbit population first reach 600?

During month 4

\[0 = \text{JAN} \]

\[1 = \text{FEB} \]

\[2 = \text{MAR} \]

\[3 = \text{APR} \]

\[4 = \text{MAY} \]
64. A Ferris wheel is 50 meters in diameter and boarded from a platform that is 5 meters above the ground. The six o’clock position on the Ferris wheel is level with the loading platform. The wheel completes one full revolution every 8 minutes. You make 2 complete revolutions on the wheel, starting at \(t = 0 \).

a) Sketch \(h = f(t) \), where \(h \) is your height on the Ferris wheel after \(t \) minutes, according to the scenario described above.

![Graph of \(h = f(t) \)](image)

b) Write an equation in the form \(h = f(t) = A \cos(Bt) + D \)

\[
f(t) = -25 \cos\left(\frac{\pi}{4}t\right) + 30
\]

c) Using the equation found in #7, find an alternative equation in the form \(h = f(t) = A \sin(B(t-C)) + D \)

\[
f(t) = +25 \sin\left(\frac{\pi}{4}(t-2)\right) + 30
\]
65. Solve algebraically for all values of θ in the interval $[0, 2\pi]$ that satisfy the equation \[
\frac{\sin^2 \theta - \cos^2 \theta}{\cos^2 \theta + \cos \theta} = \frac{1}{3} \]
\[
\sin^2 \theta = 1 + \cos \theta \\
\sin^2 \theta = \frac{1}{\cos \theta + \cos \theta} \\
\sin^2 \theta = \frac{1}{\frac{1}{\cos \theta}} \\
\sin^2 \theta = \cos \theta \\
\cos \theta = \sqrt{1 - \sin^2 \theta} \\
\cos \theta = \sqrt{1 - 1} \\
\cos \theta = 0 \\
\cos \theta = -1 \\
\cos \theta = \frac{\pi}{2}, \frac{3\pi}{2} \\
\theta = \frac{\pi}{2}, \frac{3\pi}{2}
\]

66. Find all values of x in the interval $0^\circ < x < 360^\circ$ that satisfy the equation $3\cos x + \sin 2x = 0$
\[
3\cos x + 2\sin x \cos x = 0 \\
\cos x \left(3 + 2\sin x\right) = 0 \\
\cos x = 0 \\
\frac{\pi}{2}, \frac{3\pi}{2} \\
\sin x = \pm 1
\]

67. Find all values of x in the interval $0^\circ \leq x < 360^\circ$ that satisfy the equation $4\cos^2 x - 5\sin x - 5 = 0$. Express your answer to the nearest tenth of a degree.
\[
4\left(1 - \sin^2 x\right) - 5\sin x - 5 = 0 \\
4\sin^2 x - 5\sin x - 5 = 0 \\
-4\sin^2 x - 5\sin x - 1 = 0 \\
4\sin^2 x + 5\sin x + 1 = 0
\]
\[
\begin{align*}
\text{If } a &= 4 \\
\text{If } b &= 5 \\
\text{If } c &= 1 \\
6 - 4\cos^2 x &= 25 - 4(4)(1) \\
\cos^2 x &= \frac{9}{4} \\
\sin x &= \pm \frac{3}{2} \\
\sin x &= -\frac{3}{2} \\
\sin x &= \frac{3}{2} \\
\cos x &= \pm \frac{\sqrt{1 - \left(\frac{3}{2}\right)^2}}{2} \\
\cos x &= \pm \frac{\sqrt{1 - \frac{9}{4}}}{2} \\
\cos x &= \frac{\sqrt{7}}{2} \\
\sin x &= \frac{3\pi}{2} \\
\end{align*}
\]
68. Find all values of θ in the interval $0^\circ \leq \theta < 360^\circ$ which satisfy the equation $\cos 2\theta = \cos \theta$.

\[2\cos^2 \theta - 1 = \cos \theta\]
\[2\cos^2 \theta - \cos \theta - 1 = 0\]

\[(2 \cos \theta + 1)(\cos \theta - 1) = 0\]

\[\cos \theta = \frac{-1}{2}\]
\[\cos \theta = 1\]

Ref: $\frac{\pi}{3}$

$0, 2\pi$

$\frac{2\pi}{3}, \frac{4\pi}{3}$

$120^\circ, 240^\circ, 0^\circ, 360^\circ$

69. Find, to the nearest tenth of a degree, all values of θ in the interval $0^\circ \leq \theta < 360^\circ$ that satisfy the equation $4\cos^2 \theta = 3 + 3\sin \theta$.

\[4(1 - \sin^2 \theta) = 3 + 3\sin \theta\]

\[4 - 4\sin^2 \theta = 3 + 3\sin \theta\]

\[0 = 4\sin^2 \theta + 3\sin \theta - 1\]

\[(4\sin \theta - 1)(\sin \theta + 1) = 0\]

\[\sin \theta = \frac{1}{4}\]
\[\sin \theta = -1\]

Ref: $\frac{\pi}{4}$

$\frac{3\pi}{2}$

70. Find all values of θ in the interval $0^\circ \leq \theta < 360^\circ$ that satisfy the equation $5\sin \theta + 2\cos 2\theta - 3 = 0$. Express your answer to the nearest tenth of a degree.

\[5\sin \theta + 2(1 - 2\sin^2 \theta) - 3 = 0\]

\[5\sin \theta + 2 - 4\sin^2 \theta - 3 = 0\]

\[-4\sin^2 \theta + 5\sin \theta - 1 = 0\]

\[4\sin^2 \theta - 5\sin \theta + 1 = 0\]

\[(4\sin \theta - 1)(\sin \theta - 1) = 0\]

\[\sin \theta = \frac{1}{4}\]
\[\sin \theta = 1\]

Ref: $\frac{\pi}{4}$

$\frac{3\pi}{2}$