Section 10.1 – Function Composition

The function \(h(t) = f(g(t)) \) is called the composition of \(f \) with \(g \). The function \(h \) is defined by using the output of the function \(g \) as the input of \(f \).

Example 1. Complete the table below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(f(t))</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(g(t))</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(f(g(t)))</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(g(f(t)))</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Example 2. Let \(f(x) = x^2 - 1 \), \(g(x) = \frac{2x^2}{x - 1} \), and \(p(x) = \sqrt{x} \). Find and simplify each of the following.

(a) \(g(f(x)) \)

\[
g(f(x)) = g(x^2 - 1) = \frac{(x^2 - 1)^2}{(x^2 - 1) - 1} = \frac{2(x^4 - 2x^2 + 1)}{x^2 - 2} = \frac{2x^4 - 4x^2 + 2}{x^2 - 2}.
\]

(b) \(p(g(x^2)) \)

\[
p(g(x^2)) = p(\frac{2(x^2)^2}{x^2 - 1}) = \sqrt{\frac{2x^4}{x^2 - 1}} = \frac{x\sqrt{2}}{\sqrt{x^2 - 1}}.
\]

(c) First, note that \(f(x) = x^2 - 1 \), so \(f(x + h) = (x + h)^2 - 1 = x^2 + 2xh + h^2 - 1 \). Therefore, we have

\[
\frac{f(x + h) - f(x)}{h} = \frac{(x^2 + 2xh + h^2 - 1) - (x^2 - 1)}{h} = \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} = \frac{2xh + h^2}{h} = \frac{h(2x + h)}{h} = 2x + h,
\]

so our final answer is \(2x + h \).
Example 3. For the function \(f(x) = (x^3 + 1)^2 \), find functions \(u(x) \) and \(v(x) \) such that \(f(x) = u(v(x)) \).

First, we let \(v(x) = x^3 + 1 \), the "inside" function. Then \(f(x) = (x^3 + 1)^2 = (v(x))^2 \), so we see that the function \(v(x) \) is being squared to obtain \(f(x) \). Therefore, \(u(x) = x^2 \). To see that our answer is right, note that
\[
 u(v(x)) = (v(x))^2 = (x^3 + 1)^2 = f(x).
\]
Thus, our answers are \(u(x) = x^2 \) and \(v(x) = x^3 + 1 \).

Examples and Exercises

1. Given to the right are the graphs of two functions, \(f \) and \(g \). Use the graphs to estimate each of the following.

 (a) \(g(f(0)) = -2.3 \)
 \(g(f(0)) = g(2.8) = -2.3 \)
 (b) \(f(g(0)) = 2.4 \)
 \(f(g(0)) = f(-1) = 2.4 \)

 (c) \(f(g(3)) = 0.9 \)
 \(f(g(3)) = f(-2.5) = 0.9 \)
 (d) \(g(g(4)) = 0.5 \)
 \(g(g(4)) = g(-3) = 0.5 \)

 (e) \(f(f(1)) = 1.3 \)
 \(f(f(1)) = f(2.8) = 1.3 \)

2. For each of the following functions \(f(x) \), find functions \(u(x) \) and \(v(x) \) such that \(f(x) = u(v(x)) \).

 (a) \(\sqrt{1 + x} \)

 Let \(v(x) = 1 + x \) be the "inside" function.
 Then \(\sqrt{1 + x} = \sqrt{v(x)} \), so we need to take the square root of \(v(x) \) to get \(f(x) = \sqrt{1 + x} \). Therefore, \(u(x) = \sqrt{x} \). To check our answer, note that
\[
 u(v(x)) = u(1 + x) = \sqrt{1 + x} = f(x),
\]
so our final answer is \(u(x) = \sqrt{x} \) and \(v(x) = 1 + x \).

 (b) \(\sin(x^3 + 1) \cos(x^3 + 1) \)

 Let \(v(x) = x^3 + 1 \) be the "inside" function. Then
\[
 \sin(x^3 + 1) \cos(x^3 + 1) = \sin(v(x)) \cos(v(x)),
\]
so we need to substitute \(v(x) \) into the function \(u(x) = \sin x \cos x \) to get
\[
 f(x) = \sin(x^3 + 1) \cos(x^3 + 1).
\]
To check our answer, note that
\[
 u(v(x)) = u(x^3 + 1) = \sin(x^3 + 1) \cos(x^3 + 1) = f(x),
\]
so our final answer is \(u(x) = \sin x \cos x \) and \(v(x) = x^3 + 1 \).
(c) \(3^{2x+1}\)

Let \(v(x) = 2x + 1\), so that \(3^{2x+1} = 3^v(x)\).

Therefore, if we choose \(u(x) = 3^x\), we have

\[u(v(x)) = u(2x + 1) = 3^{2x+1} \]

as desired. Our final answers are therefore \(u(x) = 3^x\) and \(v(x) = 2x + 1\).

3. Let \(f(x) = \frac{1}{1 + 2x}\).

(a) Solve \(f(x + 1) = 4\) for \(x\).

We have

\[
f(x + 1) = 4 \implies \frac{1}{1 + 2(x + 1)} = 4 \implies \frac{1}{2x + 3} = 4 \implies 1 = 4(2x + 3)
\]

\[= 1 = 8x + 12 \]

\[\implies 8x = -11,
\]

so our final answer is \(x = -11/8\).

(b) Solve \(f(x) + 1 = 4\) for \(x\).

We have

\[
f(x) + 1 = 4 \implies f(x) = 3 \implies \frac{1}{1 + 2x} = 3 \implies 1 = 3(1 + 2x)
\]

\[\implies 1 = 3 + 6x \]

\[\implies 6x = -2,
\]

so our answer is \(x = -1/3\).

(c) Calculate \(f(f(x))\) and simplify your answer.

We have

\[
f(f(x)) = f\left(\frac{1}{1 + 2x}\right) = \frac{1}{1 + 2\left(\frac{1}{1+2x}\right)} = \frac{1}{1 + \frac{2}{1+2x}}
\]

\[= \frac{1}{\frac{1+2x}{1+2x} + \frac{2}{1+2x}}
\]

\[= \frac{1}{\frac{1+2x+2}{1+2x}}
\]

\[= \frac{1 \cdot 1 + 2x}{1 \cdot 3 + 2x}
\]

so our final answer is \(\frac{1+2x}{3+2x}\).
4. For each of the following functions, calculate
\[
\frac{f(x + h) - f(x)}{h}
\]
and simplify your answers.

(a) \(f(x) = x^2 + 2x + 1 \) \hspace{1cm} (b) \(f(x) = \frac{1}{x} \) \hspace{1cm} (c) \(f(x) = 3x + 1 \)

(a)
\[
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 + 2(x + h) + 1 - (x^2 + 2x + 1)}{h} = \frac{x^2 + 2xh + h^2 + 2x + 2h + 1 - x^2 - 2x - 1}{h} = \frac{2xh + h^2 + 2h}{h} = \frac{h(2x + h + 2)}{h},
\]
so after canceling the factor of \(h \), our final answer is \(2x + h + 2 \).

(b)
\[
\frac{f(x + h) - f(x)}{h} = \frac{\frac{1}{x + h} - \frac{1}{x}}{h} = \frac{\frac{x - (x + h)}{x(x + h)}}{h} = \frac{-h}{x(x + h)} \cdot \frac{1}{h},
\]
so after canceling the factor of \(h \), our final answer is \(-\frac{1}{x(x + h)} \).

(c)
\[
\frac{f(x + h) - f(x)}{h} = \frac{3(x + h) + 1 - (3x + 1)}{h} = \frac{3x + 3h + 1 - 3x - 1}{h} = \frac{3h}{h} = 3,
\]
so our final answer is simply 3.
Section 10.2 – Invertibility and Properties of Inverse Functions

Definition. Suppose \(Q = f(t) \) is a function with the property that each value of \(Q \) determines exactly one value of \(t \). Then \(f \) has an inverse function, \(f^{-1} \), and

\[
f^{-1}(Q) = t \quad \text{if and only if} \quad Q = f(t).
\]

If a function has an inverse, it is said to be invertible.

Example 1. Given below are values for a function \(Q = f(t) \). Fill in the corresponding table for \(t = f^{-1}(Q) \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Q)</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^{-1}(Q))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Observation:

\[
f^{-1}(f(2)) = f^{-1}(7) = 2 \quad f(f^{-1}(5)) = f(1) = 5
\]

Comment: In general, \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \).

Question. Does the function \(f(x) = x^2 \) have an inverse function?

No, because (for example) \(f(1) = 1 \) and \(f(-1) = 1 \). Therefore, if there were a function \(f^{-1} \), we would have \(f^{-1}(1) \) equal to both 1 and -1, which is impossible.

Comment: Note that this example, when interpreted graphically, illustrates that \(f(x) = x^2 \) fails the Horizontal Line Test.

Horizontal Line Test. A function \(f \) has an inverse function if and only if the graph of \(f \) intersects any horizontal line at most once. In other words, if any horizontal line touches the graph of \(f \) in more than one place, then \(f \) is not invertible.
Example 2. Suppose \(B = f(t) = 5(1.04)^t \), where \(B \) is the balance in a bank account, in thousands of dollars, after \(t \) years.

(a) Find a formula for the inverse function of \(f \).

We are given \(B \) as a function of \(t \), so finding the inverse amounts to finding \(t \) as a function of \(B \). We have

\[
\begin{align*}
B &= 5(1.04)^t & \text{← } B \text{ as a function of } t \\
\frac{B}{5} &= 1.04^t \\
\ln(B/5) &= t \ln 1.04 \\
t &= \frac{\ln(B/5)}{\ln 1.04} & \text{← } t \text{ as a function of } B
\end{align*}
\]

Therefore, the formula for the inverse function is \(f^{-1}(B) = \frac{\ln(B/5)}{\ln 1.04} \).

(b) Compute each of the following and interpret them practically: (i) \(f(20) \) (ii) \(f^{-1}(20) \)

(i) \(f(20) = 5(1.04)^{20} \approx 10.96 \) thousand dollars is the amount of money in the account after 20 years.

(ii) Using the answer to part (a) above, we have

\[
f^{-1}(20) = \frac{\ln(20/5)}{\ln 1.04} \approx 35.35 \text{ years}.
\]

Therefore, \(f^{-1}(20) = 35.35 \text{ years} \) is the amount of time it takes until the account has 20 thousand dollars in it.
Examples and Exercises

1. Find a formula for the inverse function of each of the following functions.

(a) \(f(x) = \frac{x - 1}{x + 1} \)

We have

\[
y = \frac{x - 1}{x + 1} \implies y(x + 1) = x - 1 \implies yx + y = x - 1
\]

\[
\implies yx - x = -1 - y
\]

\[
\implies x(y - 1) = -1 - y,
\]

so \(x = \frac{-1 - y}{y - 1} \), and our answer is therefore \(f^{-1}(y) = \frac{-1 - y}{y - 1} \).

(b) \(g(x) = \ln(3 - x) \)

We have

\[
y = \ln(3 - x) \implies e^y = e^{\ln(3-x)} \implies e^y = 3 - x
\]

\[
\implies x = 3 - e^y,
\]

so our answer is \(g^{-1}(y) = 3 - e^y \).

2. Given to the right is the graph of the functions \(f(x) \) and \(g(x) \). Use the function to estimate each of the following.

(a) \(f(2) = -1 \)
(b) \(f^{-1}(2) = -4 \)

(c) \(f^{-1}(g(-1)) \approx 2.6 \)
\(f^{-1}(g(-1)) \approx f^{-1}(-2) \approx 2.6 \)

(d) \(g^{-1}(f(3)) = -2.7 \)
\(g^{-1}(f(3)) \approx g^{-1}(-3.2) \approx -2.7 \)

(e) Rank the following quantities in order from smallest to largest: \(f(1), f(-2), f^{-1}(1), f^{-1}(-2), 0 \)

\[f^{-1}(1) < f(1) < 0 < f(-2) < f^{-1}(-2) \]
3. Let \(f(x) = 10e^{(x-1)/2} \) and \(g(x) = 2\ln x - 2\ln 10 + 1 \). Show that \(g(x) \) is the inverse function of \(f(x) \).

We have

\[
f(g(x)) = f(2\ln x - 2\ln 10 + 1) = 10e^{(2\ln x - 2\ln 10 + 1 - 1)/2} \\
= 10e^{2\ln x - \ln 10}/2 \\
= 10e^{\ln x - \ln 10} \\
= 10\cdot(x/10) = x,
\]

so \(f(g(x)) = x \) for all \(x \). Similarly, we have

\[
g(f(x)) = 2\ln(10e^{(x-1)/2}) - 2\ln 10 + 1 \\
= 2(\ln 10 + \ln e^{(x-1)/2}) - 2\ln 10 + 1 \\
= 2\ln 10 + 2\left(\frac{x-1}{2}\right) - 2\ln 10 + 1 \\
= 2\ln 10 + (x - 1) - 2\ln 10 + 1 \\
= x,
\]

so \(g(f(x)) = x \) for all \(x \). Therefore, since \(f(g(x)) = g(f(x)) = x \) for all \(x \), we see that \(g(x) = f^{-1}(x) \).

4. Let \(f(t) \) represent the amount of a radioactive substance, in grams, that remains after \(t \) hours have passed. Explain the difference between the quantities \(f(8) \) and \(f^{-1}(8) \) in the context of this problem.

\(f(8) \) is the amount, in grams, of the radioactive substance that remains after 8 hours.

On the other hand, \(f^{-1}(8) \) is the time that it takes, in hours, until only 8 grams of the radioactive substance remains.