1) Find formulas for the following linear functions:

- a) This function has a slope \(\frac{1}{2} \) and passes through the point \((-2, -7)\) \(\Rightarrow y + 7 = \frac{1}{2}(x + 2)\)
- b) This function has a slope of 7 and x-intercept of 9. \(y - 0 = 7(x - 9)\) \(\Rightarrow (9, 0)\)
- c) A line is perpendicular to the line \(y = 2x - 4\) and passes through the point \((-5, 6)\) \(\Rightarrow m: 2 \Rightarrow m \perp = -\frac{1}{2} \Rightarrow y - 6 = -\frac{1}{2}(x + 5)\)
- d) In this function, \(f(-2) = 3\) and \(f(-4) = 7\).

\[
\begin{align*}
(2, 3) & \quad (4, 7) \\
\Rightarrow m = \frac{-2 - 3}{2 - 7} & \Rightarrow y - 3 = -2(x + 2) \\
\Rightarrow m = \frac{-7 - 4}{2} & \Rightarrow y - 7 = -2(x + 4)
\end{align*}
\]

2) Find the average rate of change of for each of the following:

- a) \(f(x) = 2x^2 - 5x\) on the x-interval from \([-1, 4]\) and \([x, x+h]\).
 \[
 \frac{f(x+h) - f(x)}{h} = \frac{(2x+h)^2 - 5(x+h) - (2x^2 - 5x)}{h} = \frac{2x^2 + 4xh + h^2 - 5x - 5h - 2x^2 + 5x}{h} = \frac{4xh + h^2 - 5h}{h} = \frac{4x + h - 5}{4x + h - 5}
 \]
- b) Based on your answer from a), what is \(f'(x)\)?
 \[
 \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 4x - 5 \quad \text{so} \quad f'(x) = 4x - 5
 \]
- c) Use the population data below to find the average rate of change in population between the years 2000 and 2012.

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2004</th>
<th>2008</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>10,200</td>
<td>13,550</td>
<td>16,700</td>
<td>19,800</td>
</tr>
</tbody>
</table>

\[
\frac{19,800 - 10,200}{2012 - 2000} = \frac{9,600}{12} = 800
\]

3) The wild rabbits of Australia have recently been seriously threatened by a virus that was accidentally released into their population.

Suppose that the following table gives \(r\), the number of rabbits (in millions) remaining \(t\) months after the release of the virus.

<table>
<thead>
<tr>
<th>(t) (months)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r) (millions)</td>
<td>1940</td>
<td>1842</td>
<td>1649</td>
<td>1328</td>
<td>1140</td>
<td>989</td>
<td>765</td>
<td>502</td>
<td>296</td>
<td>104</td>
</tr>
</tbody>
</table>

- a) Assuming linearity, express \(r\) as a function of \(t\).
 \[
 r(t) = -106.097t + 2213.466
 \]

- b) Use the linear model found in part (a) to estimate the rabbit population 15 months after the release of the virus.

\[
\text{Estimated rabbit population} = 422 \text{ millions}
\]

- c) What is the physical significance of the slope? How the rabbit pop is changing per year?

\[
\text{Slope: losing 106.097 million rabbits/year.}
\]

- d) What are \(t\) and \(r\) intercepts, and their significance?

\[
\text{\(t\)-intercept: 20.86 (4 years until 0 rabbits remain)}
\quad \text{\(r\)-intercept: 2213 (initial rabbit pop.)}
\]

- e) Evaluate and interpret \(f(-1)\).

\[
\text{The } \# \text{ of rabbit present 1 month before we started tracking the data.}
\]

\[
\text{The } \# \text{ of rabbit present 1 month before we started tracking the data.}
\]

\[
\text{The } \# \text{ of rabbit present 1 month before we started tracking the data.}
\]
4) A ball is thrown straight up in the air. The velocity of the ball, in feet per second, is given by the equation: \(v(t) = -32t + 40 \).

a) Evaluate and interpret \(v(3) \).
\[
-32(3) + 40 = 4
\]

b) Evaluate and interpret the slope and both intercepts of \(v(t) \).
\[
\begin{align*}
\text{Initial velocity} & \quad \text{when} \ t = 0 \quad \Rightarrow \quad v(0) = 40 \\
\text{Time when speed is 0} & \quad \Rightarrow \quad t = 1.25
\end{align*}
\]

5) Let \(v(t) \) give the value of a 1987 Honda Civic \(t \) years after it was first purchased. Suppose that in 1991 the car’s value was $5500 and that its 1995 value is $3000.

\[
\begin{align*}
\text{Value} & = 5500 \quad \text{at} \ t = 4 \\
\text{Value} & = 3000 \quad \text{at} \ t = 8
\end{align*}
\]

a) If the Civic depreciates in value at a constant annual rate, find a formula for \(v(t) \).
\[
\begin{align*}
\frac{5500 - 3000}{4} & = 625 \\
\therefore \quad \frac{5500 - 3000}{8} & = 625
\end{align*}
\]

b) What is the financial significance of the slope of your formula? $625 per year

c) What is the financial significance of the \(v \)-intercept and the \(t \)-intercept of your graph?
\[
\begin{align*}
\text{Initial Value} & = 5500 \\
\text{Time} & = 12.8 \quad \text{(The time it takes for the car to reach a value of 0.)}
\end{align*}
\]

6) The number of pairs of shoes, \(S \), in thousands, that suppliers are willing to produce for a price \(p \) is given by the function: \(S(p) = \frac{1}{2} p - 5 \).

The number of pairs of shoes, \(C \), in thousands, that consumers are willing to buy at price \(p \) is given by the function \(C(p) = \frac{-2}{5} p + 40 \).

a) Evaluate and interpret \(S(50) = 20 \).

b) What is the significance of the slope in each of the two equations?

c) What is the significance of the \(p \) and \(S \) intercepts?

d) What is the significance of the \(p \) and \(C \) intercepts?

e) At what price will the number of shoes the suppliers are willing to produce (supply) equal the number of shoes the consumers are willing to buy (demand)?

\[
\begin{align*}
\text{At} \quad p = 50, \quad \text{the initial cost to the company to make the product}.
\end{align*}
\]