Square Roots Algebra (Grade 8)

When you multiply a number by itself, you square the number.

Symbol for squaring is the exponent 2.
$$4^2 = 4 \cdot 4$$

4 squared is 16.

Examples of Perfect Squares				
$1^2 = 1$	$4^2 = 16$	$7^2 = 49$	$10^2 = 100$	$13^2 = 169$
$2^2 = 4$	$5^2 = 25$	$8^2 = 64$	$11^2 = 121$	$14^2 = 196$
$3^2 = 9$	$6^2 = 36$	$9^2 = 81$	$12^2 = 144$	$15^2 = 225$

To "undo" this, take the square root of the number.

 \rightarrow $\sqrt{16} = \sqrt{4^2} = 4$ The square root of 16 is 4.

You should become familiar with recognizing perfect squares without a calculator. Sometimes you will need your calculator to compute square roots.

Examples of Square Roots						
$\sqrt{1} = 1$	$\sqrt{16} = 4$	$\sqrt{49} = 7$	$\sqrt{100} = 10$	$\sqrt{169} = 13$		
$\sqrt{4}=2$	$\sqrt{25} = 5$	$\sqrt{64} = 8$	$\sqrt{121} = 11$	$\sqrt{196} = 14$		
$\sqrt{9} = 3$	$\sqrt{36} = 6$	$\sqrt{81} = 9$	$\sqrt{144} = 12$	$\sqrt{225} = 15$		

The symbol $\sqrt{}$ is called a **radical sign**. It is used to represent a square root. The number under the radical sign is called the radicand.

Exercise #1: Find the square root. Do not use a calculator.

a.
$$\sqrt{81}$$

b.
$$\sqrt{16}$$

b.
$$\sqrt{16}$$
 c. $\sqrt{400}$

d.
$$\sqrt{\frac{9}{49}}$$
 e. $\sqrt{\frac{1}{4}}$ f. $\sqrt{0}$

e.
$$\sqrt{\frac{1}{4}}$$

Exercise #2: For each of the following squares the area is given. Find the length of a side and the perimeter.

Side =

Area = 2.89 in.^2

Side =

Side =

Perimeter =

Perimeter =

Perimeter =

Exercise #3: The area of a circle is computed using the formula $A = \pi r^2$. r is the radius of the circle. Find the **radius** of each circle pictured.

a.

c.

Area = π yd²

Exercise #4: Use the square root button on your calculator to find each square root to the nearest 10th.

a.
$$\sqrt{8}$$

b.
$$\sqrt{40}$$

b.
$$\sqrt{40}$$
 c. $\sqrt{51}$ d. $\sqrt{2}$

d.
$$\sqrt{2}$$

e.
$$\sqrt{\frac{1}{4}}$$

f.
$$\sqrt{0}$$

g.
$$\sqrt{500}$$
 h. $\sqrt{\pi}$ i. $\sqrt{10}$

h.
$$\sqrt{\pi}$$

j.
$$\sqrt{\frac{1}{3}}$$

j.
$$\sqrt{\frac{1}{3}}$$
 k. $\sqrt{\frac{2}{5}}$ l. $\sqrt{\frac{1}{2}}$

I.
$$\sqrt{\frac{1}{2}}$$

Square roots can be **negative** if a **negative** is **outside the radical.** A square root can also be **positive or negative**.

Positive Square Root, $\sqrt{}$	Negative Square Root, $-\sqrt{}$	Both Square Roots, ±√	
$\sqrt{16} = 4$	$-\sqrt{16} = -4$	$\pm\sqrt{16} = \pm 4$	

A square root of a number is a number that, when multiplied by itself, equals the given number. Every positive number has a positive and a negative square root. A perfect square is a number with integers as its square roots.

Exercise #5: Compute 5^2 and $(-5)^2$. What does this tell us about $\sqrt{25}$? What does our calculator do for $\sqrt{25}$?

Exercise #6:

Find the two square roots of the number.

Exercise #7: Parameter.

3. 121
$$5\sqrt{36} + 7 = \frac{1}{4} + \sqrt{\frac{18}{2}} = (\sqrt{81})^2 - 5$$
6. $\sqrt{12.25}$
$$\sqrt{\frac{28}{7}} + 2.4$$

$$(\sqrt{81})^2 - 5$$

$$12 - 3\sqrt{25}$$

$$\sqrt{\frac{28}{7}} + 2.4$$

5.
$$\pm \sqrt{\frac{4}{25}}$$